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bounding boxes instead of exact pixel-level masks. To tackle this challenge, we

introduce a hybrid approach, where we use traditional computer vision techniques,

such as Otsu and adaptive thresholding, and marked watershed, to create pixel-

level pseudo-masks that are used to train a U-Net model. We show that using a

small, although fully annotated, dataset is insufficient to train the model. Next, we

try training the model on the pseudo-masks created by different computer vision

pipelines, on the large weakly annotated dataset. To use the combined strength of

different pseudo-masks, we then try making a second generation of them by trying

various fusion strategies. Finally, we tried a transfer learning approach, where a

model pretrained on a large dataset with pseudo-masks is fine-tuned on a small,

fully annotated dataset, and this model achieved the best results. We evaluate each

model using quantitative metrics such as the Dice coefficient and the intersection

over the union, and qualitative metrics by visualizing its predictions.
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V tejto práci sa zaoberáme technikami slabej segmentácie v digitálnej patológii

so zameraním na segmentáciu jadier lymfocytov u pacientov s rakovinou prsníka.

Hlavná výzva vyplýva zo slabých anotácií jadier vo forme ohraničujúcich rámčekov

namiesto presných masiek na úrovni pixelov. Na riešenie tejto výzvy zavádzame

hybridný prístup, kde používame tradičné techniky počítačového videnia, ako sú

Otsu a adaptívne prahovanie, a značkami-riadený algoritmus watershed, na vytvo-

renie pseudo-masiek, ktoré sa používajú na trénovanie modelu U-Net. Ukazujeme,

že použitie malého, plne anotovaného datasetu je na trénovanie modelu nedosta-

točné. Ďalej vyskúšame trénovať model na pseudo-maskách vytvorených rôznymi

metódami počítačového videnia na veľkom, slabo anotovanom datasete. Aby sme

využili kombinovanú silu rôznych pseudo-masiek, vytvoríme ich druhú generáciu

vyskúšaním rôznych stratégií zlúčenia. Nakoniec použijeme prístup učenia s preno-

som, kde sa model predtrénovaný na veľkom datasete s pseudo-maskami dotrénuje

na malom, plne anotovanom datasete, pričom tento model dosiahol najlepšie vý-

sledky. Každý model hodnotíme pomocou kvantitatívnych metrík, ako sú Dice

koeficient a IoU, a kvalitatívnych metrík vizualizáciou jeho predpovedí.
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Chapter 1

Introduction

In the past few years, algorithms of computer vision and especially artificial in-

telligence and deep neural networks brought promising results in image data pro-

cessing, mostly in the tasks of object detection, semantic segmentation, and clas-

sification [1]. These advancements may have a significant impact in a vast number

of fields, one of them being medicine [2, 3, 4].

In medicine, different types of imaging techniques are being used to provide both

non-invasive and invasive visualizations of internal organs, tissues, and other struc-

tures. Among non-invasive techniques, we can count, for example, X-ray radiog-

raphy, ultrasound imaging, magnetic resonance imaging (MRI), and computed to-

mography (CT). Apart from them, we also mentioned invasive techniques - these

are necessary when doctors need to examine a microscopic piece of tissue, e.g.,

potential tumor tissue or tissue that is known to be a tumor. This is a discipline

called histology or histopathology. Doctors can obtain the tissue either by per-

forming a biopsy or surgical resection. Biopsy is a less invasive method - it involves

inserting a needle into the patient’s body tissue and taking out a small sample. On

the other hand, surgical resection is much more invasive and involves some sort of
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surgical procedure during which the desired piece of tissue is removed. Depending

on what doctors want to examine, these samples are then processed further. In

the histopathology domain, staining of these images with chemicals is a common

practice. This staining helps to create visual contrast between cells, tissues, and

other objects on the image slide. Hematoxylin and eosin staining (H&E staining)

is the most widely used staining method for histopathology slides [5]. Both its

components are used to stain different regions of the image. Hematoxylin is re-

sponsible for colorizing cell nuclei into shades of deep blue and purple, while eosin

is used for staining the extracellular matrix, cytoplasm, and connective tissues in

shades of pale red and pink [5]. An example of this staining on a histopathology

image can be seen in Figure 1.1.

Figure 1.1: Example of histology image stained with hematoxylin and eosin

Slides stained by these chemicals are then examined by histopathology experts

who try to identify key features that would determine a diagnosis, future treat-

ment plan, or other subsequent steps. A very good example of this whole process

can serve as a method of adjusting treatment for patients who suffer from breast
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cancer.

1.1 Motivation

In recent decades, breast cancer has been one of the leading causes of death among

women and the second most commonly diagnosed type of cancer worldwide [6, 7].

According to [6] in 2022, breast cancer was attributed to approximately 2.3 million

newly diagnosed patients - this represents 11.6% of all diagnosed cancer patients

in that year and 666,000 deaths, comprising 6.9% of all cancer deaths. [7] informs

that in the USA in the year of 2023, breast cancer among women accounted for

more than 297,000 new cases - 31% of all new female cancer cases and more than

43,000 deaths - 15% of all female cancer deaths.

When dealing with breast cancer, one needs to keep in mind that there are also

different subtypes of breast cancer. Firstly introduced in [8], we now know four

breast cancer molecular subtypes, based on the positivity or negativity of sev-

eral receptors. These receptors are Human Epidermal Growth Factor Receptor 2

(HER2) and Hormonal Receptor (HR), which are positive if either Estrogen or

Progesterone receptors are positive; otherwise, it is negative. These four classes,

along with respective receptor statuses, can be seen in Table 1.1.

Table 1.1: Breast Cancer Molecular Subtypes and Receptor Statuses

Subtype Class Hormone Receptor (HR) HER2
Luminal A Positive Negative
Luminal B Positive Positive
HER2-enriched Negative Positive
Triple Negative (TNBC) Negative Negative

From the aforementioned subtypes, the last three are the ones that currently have

the worst prognosis [9, 10]. Identifying and using certain biomarkers could po-
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tentially improve the prognosis of patients with these subtypes of breast cancer.

Tumor-infiltrating lymphocytes (TILs) appear as such biomarkers, especially their

presence, number, and spatial organization within the tumor and tumor-related

tissue [11, 12, 13]. However, manual identification and visual recognition of TILs

from H&E-stained slides is a difficult, time-consuming, and error-prone task even

when performed by experienced histopathology experts [11, 13].

1.2 Objectives

Manual analysis of histopathology slides is expensive, takes a long time to com-

plete, and requires highly trained professionals and quality assurance by perform-

ing peer reviews [4]. With the invention of virtual microscopy, which enables

H&E-stained glass slides to be converted into digital slides, and the introduction

of Whole-slide Images (WSIs), the field is entering a new era. The term Digital

Pathology or Digital Histopathology is often used. In Digital Pathology, much

effort is put into developing tools that would help medical experts to semi- or fully

automate the visual analysis of the digital slides. Entities such as different tissue

types and cells can be identified and classified.

Deep learning has shown extreme potential in many areas, including medicine and

processing of medical image data [1]. The usage of deep learning models also in-

troduces a new challenge: for them to produce reasonably good results, they need

a huge amount of high-quality data [14]. Precise manual annotation of histology

slides is not an easy nor a cheap task, as we have mentioned earlier. Therefore,

our aim in this work is to develop and implement a pipeline for automated seg-

mentation of tumor-infiltrating lymphocytes from breast cancer histology image

slides using two sources of data:

• Tumor Infiltrating Lymphocytes in Breast Cancer - TIGER - a large dataset

4



Chapter 1. Introduction

with weak annotations of lymphocyte nuclei, in the form of bounding boxes,

which is publicly available via the Grand Challenge platform [15] and

• Triple Negative Breast Cancer Nuclei Segmentation - TNBC - a small dataset

with full pixel-level annotations of lymphocyte nuclei, which is also publicly

available [16].

Since the provided weak annotations of the TILs are in the form of bounding boxes,

our goal is twofold:

1. Develop, implement, and compare different strategies for creating pseudo-

masks by converting bounding box annotations into pixel mask annotations

by utilizing methods of traditional computer vision and

2. Train a deep learning segmentation model, using different combinations of

pseudo-masks, and evaluate it on the evaluation metrics such as Intersection

over Union (IoU) and Dice coefficient.

In the end, we want to compare models trained on various pseudo-mask creation

strategies in the semantic segmentation task of individual lymphocyte nuclei, uti-

lizing both a weakly annotated large dataset and a small, fully annotated dataset

of H&E-stained histology images of breast cancer patients. We also want to utilize

transfer learning, where we pre-train the model on the TIGER dataset and then

fine-tune it using the TNBC dataset.

This work is structured in the following way: Chapter 2 describes the concept of

computer vision and machine learning. Chapter 3 looks at the history and current

trends in deep learning. Chapter 4 describes the state-of-the-art works in our field

of interest. In Chapter 5 we present our work, and in Chapter 6 we conclude the

work. In Appendix A we show the plan of work, and in Appendix B we include

the technical documentation for our work.
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Computer Vision and Machine

Learning

Vision is one of our primary senses. Therefore, it is understandable that we seek

methods for capturing, storing, analyzing, and processing this kind of data. Dig-

ital image processing is a vast area of different disciplines, ranging from low-level

operations such as noise reduction, image sharpening, and contrast adjustment

through mid-level operations like classification and segmentation to high-level op-

erations which involve making higher sense of the images and resembling human

visual perception and intelligence [17].

Computer Vision, a subfield of computer science and an extension of digital image

processing, focuses on using computers to extract meaningful knowledge from im-

ages in various ways, thereby emulating the capabilities of the human brain and

visual cortex [17]. As part of machine learning and artificial intelligence, computer

vision uses automation algorithms to analyze and process visual data, including

2D and 3D images as well as videos [18, 19].
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Machine learning is a subset of artificial intelligence that includes both statistical

learning and deep learning algorithms to make intelligent decisions based on data.

Modern computer vision primarily utilizes deep learning techniques, as illustrated

in Figure 2.1. In classical programming, we are designing an explicit program that

produces desired outputs for specific inputs. In machine learning, however, we let

the machine design an appropriate program, given the specified set of inputs and

outputs (labels) by analyzing the features and patterns of the input with relation

to the output [20].

Figure 2.1: Division of AI/ML [19].

With the advent of deep learning [1] and especially convolutional neural networks

[21], computer vision is now a field of huge interest.

2.1 Preprocessing

Since the machine learning algorithms try to examine the relationship between

input and output, we need to ensure an appropriate quality of the input data. Es-

pecially in medical imaging and digital histopathology, where the different staining
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techniques, scanning tools, or position of the tissue can vary widely, and this can

affect the further analysis [22].

In the domain of digital histopathology, a common issue is the varying intensities

of purple, red, and pink tones of H&E-stained slides [22]. For this purpose, dif-

ferent stain normalization techniques were created. Among the examples, we can

list the Macenko, Reinhart, or Zheng normalization techniques, which try to nor-

malize the dataset of input images [22]. Among some other techniques, we can list

the histogram equalization, Contrast-Limited Adaptive Histogram Equalization

(CLAHE), and the power law (gamma) transformation [23].

2.2 Core Computer Vision Tasks

When analyzing an image, we can come across the three main tasks [20]. The

example of each of these tasks can be seen in Figure 2.2.

Figure 2.2: Different Computer Vision tasks [20].

2.2.1 Image Classification

Image classification is used when we have a label categorizing the image into one

of the classes (or multiple classes) in the set of classes [20]. For example, in the

medical imaging domain, we could label an image with the "disease" or "non-

disease" class.
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2.2.2 Object Localization and Object Detection

Object localization and object detection are very similar tasks. While the former

is a task of localizing a single object instance in the image, the latter is a task

where multiple instances of one or many objects should be detected and bounded

[20].

2.2.3 Segmentation

Sometimes we want to get a more detailed label than just an approximate object lo-

cation (bounding rectangle). Segmentation utilizes pixel-level classification, where

pixels can be labeled based on their relationship to various classes. According to

[20], we know two main types of segmentation:

• Semantic segmentation, where each pixel of a certain class gets the same

label, no matter the number of instances, and

• Instance segmentation, where the pixels of different instances of the same

class are distinguished as well.

Apart from the currently most popular and interesting segmentation algorithms

using deep learning, we also know some traditional segmentation techniques, like

the Otsu thresholding, adaptive thresholding, and watershed algorithm.

2.3 Learning Paradigms

Computer vision algorithms can be further divided by how they can learn from

the data [20].

Supervised Learning In the supervised learning tasks, both the data and their

respective labels are known and are available to the model during the training.
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Typical supervised learning tasks include classification, detection, and segmenta-

tion. By the quality and precision of the labels and the task goal, we can split

supervised learning into three categories:

• Standard supervised learning, when available labels are of the same quality

as the labels we want to predict, e.g., bounding box to bounding box.

• Strong supervised learning, when the training labels contain richer informa-

tion than the labels we want to predict, e.g., bounding box from pixel-level

annotations.

• Weak supervised learning, when the training labels contain less precise infor-

mation than the labels we want to predict, e.g., a bounding box from image

image-level annotation.

Unsupervised Learning In unsupervised learning, on the other hand, the data

labels are not available to the model during the training. The model itself must

discover the patterns directly from the raw input, for example by grouping similar

samples into clusters (e.g., k-means or hierarchical clustering), reducing dimension-

ality to capture the most informative features (e.g., principal component analysis

or autoencoders), or learning a compact representation through self-organizing

maps or generative models. Examples of tasks include: anomaly detection, where

outliers stand out from the norm, and density estimation, where the goal is to

model the underlying data distribution. Because no true labels guide the process,

evaluation often relies on intrinsic measures (such as silhouette score for clusters)

or downstream performance when those representations are fed into supervised

tasks.
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Chapter 3

Deep Neural Networks

The history of artificial neural networks (ANN) dates back to 1943. In [24] authors

tried to mathematically describe the activity of biological neurons in the human

brain. Using these principles, they built the first artificial neuron and artificial

neural network. In 1974, a PhD student, Paul Werbos, introduced in [25] the

idea of backpropagation of errors by which ANNs can learn other than linearly

separable problems, and this idea was further expanded in [26]. Artificial neural

networks that contain many hidden layers are also called deep neural networks

(DNN), and the process of training this network is called deep learning [1]. Over

the years, deep learning and one of its variants - a convolutional neural network

that was proposed in [27] - were found to be very effective and precise in domains

that were found unreachable by the classical AI and ML algorithms [1]. This

was caused by their ability to capture abstract and complex patterns that simpler

models found impossible to catch. Such examples include analysis of image data

[28, 29] and recent advancements in natural language processing (NLP) [30].
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3.1 Structure

The fundamental part of every artificial neural network is the neuron. A neuron

is basically a function that has one or more inputs and one output. Inside this

neuron, a mathematical computation is being done to transform input into output.

Input can also be referred to as an input vector or a vector of input features. Each

input feature has its own weight by which it is multiplied. Next, a bias is added to

the multiplied and summed features and weights. This calculation is still linear, so

for it to be able to capture more complex patterns, we need to apply a non-linear

activation function to its output. The mathematical representation of an artificial

neuron can be seen in the Equations 3.1 and 3.2 [31].

z = b+
n∑

i=1

(wixi) (3.1)

a = φ(z) (3.2)

Where z is the output produced by the linear unit, b is the bias, n is the number

of input features, xi is the i -th input feature, wi is the weight associated with the

i -th input feature, a is the actual output, and φ is the activation function.

A visual example of the artificial neuron can be seen in Figure 3.1.
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Figure 3.1: Artificial neuron [32].

3.1.1 Activation Functions

Activation functions are used to break linearity in neural networks - this enables

them to capture more complex patterns, which are not linearly separable. Ac-

tivation functions are used in combination with linear functions inside neurons.

Different activation functions can be used, such as Sigmoid, Tanh, ReLU, ELU,

GELU, and many more [33, 34]. The important part of an activation function is

also its gradient, which is computed during backpropagation.

Sigmoid Sigmoid is computed by the Equation 3.3 and its derivative by the

Equation 3.4. As we can see in Figure 3.2 has a steep gradient around zero and it

gradually flattens on both sides.

σ(z) =
1

1 + e−z
(3.3)

σ
′
(z) = σ(z)(1− σ(z)) (3.4)
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Figure 3.2: Sigmoid activation function (red) and its derivative (green) [35].

The output of the sigmoid is bound between zero and one, and its gradient can be

used to push the output either closer to one or closer to zero [35]. It is often used

for the output unit for the binary classification task, where the output is desired

to be between zero and one [35, 31].

Tanh Next function is the tanh activation function, given by the Equation 3.5

and its respective derivative displayed on the equation 3.6.

tanh(z) =
ez − e−z

ez + e−z
(3.5)

tanh
′
(z) = 1− tanh2(z) (3.6)

Like the sigmoid function, it compresses the input; however, unlike the sigmoid,

its output is constrained to the range of -1 to 1, as shown in Figure 3.3.
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Figure 3.3: Tanh activation function (red) and its derivative (green) [35].

ReLU The problem with sigmoid and tanh functions is the vanishing gradient

and computational complexity. Vanishing gradient means that the gradient of a

function is almost flat, hence close to zero, which leads to no or very little update

in the network’s learnable parameters (weights and biases) during the training [33,

34].

As a possible solution to these problems, a rectified linear unit, also known as

ReLU, was introduced [36]. ReLU is a simple function; its Equation 3.7 and

derivative Equation 3.8 are straightforward.

ReLU(z) =

z, if z > 0,

0, if z ≤ 0.

(3.7) ReLU′(z) =

1, if z > 0,

0, if z ≤ 0.

(3.8)

The ReLU function can be seen in Figure 3.4. It basically returns its input if the

input is positive otherwise, it returns zero. Since the derivative of x is always one,

the problem with vanishing gradient is solved.
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Figure 3.4: ReLU activation function (red) and its derivative (green) [35].

ReLU also introduces some potential drawbacks, i.e., the output for negative input

is always zero. The problem called dying ReLU [33, 35, 34] is when a negative

input causes no updates in weights during training, and neurons in this state do not

respond to error variations [35]. To fix this problem, we can multiply the negative

input value by a very small constant, which will allow the weights to be updated

if it is needed. This modified ReLU is called Leaky ReLU [37] and its formula and

formula of its gradient are displayed in Equations 3.9 and 3.10 respectively.

LeakyReLU(z) =

z, if z > 0,

αz, if z ≤ 0.

(3.9)

LeakyReLU′(z) =

1, if z > 0,

α, if z ≤ 0.

(3.10)

In addition to the Leaky ReLU, many other ReLU variants were introduced over

the years, each bringing its own advantages, disadvantages, and challenges [33,

34].

Nowadays, the most commonly used activation function for hidden units is the

ReLU activation function [33, 31, 1].
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3.1.2 Layers

Similarly to biological neural networks, when artificial neurons are chained to-

gether, meaning the output from one neuron is passed to another neuron, they

create an artificial neural network.

This network is organized in layers. Neurons in each layer are not connected

together, but rather every neuron from layer L is connected with every neuron from

layer L+1, except neurons in the first (input) layer. For better understanding, we

will refer to the Figure 3.5, where we can see an example of a neural network.

Figure 3.5: Example of deep artificial neural network [38].

A neural network can be divided into three main parts:

• Input layer

• Hidden layers

• Output layer

Input layer is the initial layer and the only layer that does not contain neurons

which perform calculations but rather consists of N input features x1, x2, . . . , xN

also referred to as a vector x⃗ of input features displayed in equation 3.11.
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x⃗ =


x1

x2

...

xN

 (3.11)

The subsequent layers between the input layer and output layer are called hidden

layers. The name comes from the fact that their outputs are not directly observ-

able, nor are they provided by the external environment - they are internal to the

network’s architecture. Neurons inside these layers perform calculations on the

input and produce output, which is then fed forward to the next layer [1].

The final output layer produces the output of the network. Output and number

of neurons depend on the task the network is being trained for. For regression

tasks, one neuron is often suitable - it predicts a continuous variable [31]. During

classification tasks, it can further depend on the nature of the classification. In

binary classification, again, a single neuron can suffice. It will display a probability

of the input belonging to one of the classes - if the probability is high, it will assign

that class to it, and if the probability is low, it will assign the other class to it

[31]. In multi-class classification, the number of neurons is the same as the number

of classes, and each neuron predicts a probability of the input belonging to one

specific class [31].

3.2 Loss Functions

Loss function, sometimes also referred to as cost function, is a function that com-

putes the difference between the result predicted by the model and the ground

truth. This difference is called an error. The error guides the model during train-

ing and is responsible for parameter updates. We are trying to find the local
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minimum of the cost function - a point where the error value is as low as possible,

because this means that the model is making good predictions. Hence, we are try-

ing to find a global minimum of the cost function. Similarly to different activation

functions, there is also a variety of cost functions.

Mean Squared Error Mean squared error (MSE) is computed as the sum of

all differences between predicted output and real values (ground truth) raised to

the power of two. The Equation 3.12 displays this computation, where m is the

number of input samples, y is the ground truth, and ŷ is the output predicted by

the model. Despite being effective for regression problems, MSE is not suitable for

classification problems [35].

EMSE =
1

m

m∑
i=1

(yi − ŷi)
2 (3.12)

Cross-entropy Loss Much more efficient loss functions for classification prob-

lems are the entropy-based ones. For example, for binary classification, a logistic

loss function, by which a binary cross-entropy error (BCE) is measured, is suitable

[35]. It is given by the Equation 3.13, where m is the number of input samples, y

is the ground truth, and ŷ is the predicted output.

EBCE = − 1

m

m∑
i=1

(ŷ log y + (1− ŷ)(log (1− y))) (3.13)

This function can be modified to compute error for multiclass classification as well

- this is also called categorical cross-entropy error (CCE). If we assume we have C

distinct classes we want to assign input into (and input can belong to exactly one
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class), then the Equation 3.14 computes the error. Here m is the number of input

samples, C is a set of classes, yi,c is the ground truth for the i -th sample and c-th

class, usually represented as a one-hot encoded vector where yi,c = 1 if the i -th

input belongs to the c-th class, and yi,c = 0 and ŷi,c is the predicted probability

for the i -th sample belonging to the c-th class.

ECCE = − 1

m

m∑
i=1

C∑
c=1

(yi,c log ŷi,c) (3.14)

Dice Loss The most popular choice for the object segmentation task, and es-

pecially in the medical imaging domain, is the Dice loss function [39]. It uses

the Dice similarity coefficient (DSC) to compute the difference between predicted

map p and ground truth map y for each class j of C classes. A slight problem

exists with the DSC - it is not differentiable, therefore it cannot be used directly in

training. To overcome this obstacle, neural networks use a probabilistic version of

DSC to the discrete DSC in training [39]. Its computation is displayed in Equation

3.15 where N depicts the number of pixels and ϵ is a small constant used to avoid

division by zero. The computation of overall dice loss is displayed in Equation

3.16, where Di is the DSC computed for the i -th training sample.

DSCi = Di =
2
∑N

n=1

∑C
j=1(yn,jpn,j) + ϵ∑N

n=1

∑C
j=1(yn,j + pn,j) + ϵ

(3.15)

EDiceLoss =
1

m

m∑
i=1

(1−Di) (3.16)
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3.3 Training

During the training phase, a neural network tries to minimize the cost function

by adjusting its parameters - weights and biases. This process is often called

learning, and we can say that the neural network learns to map input features

onto the desired output. Before the training process, we need to ensure that the

data is of the desired quality and quantity; otherwise, the training will not be

effective, and the performance of the resulting model will be poor. Methods such

as data preprocessing are typically used [31, 1].

The training itself consists of multiple steps:

1. Parameter initialization

2. Forward propagation

3. Cost function computation

4. Backpropagation and parameter updates

Parameter initialization During parameter initialization, we set the initial

values of all learnable parameters of the network (parameters that can be updated

during training). Different weight initialization strategies were developed; their

overview can be seen in Figure 3.6.

Figure 3.6: Different weight initialization strategies [40].
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Methods such as Xavier/Glorot or He initialization are also popular [41].

Forward propagation During forward propagation, the input sample data is

fed forward through the layers of the network. For a hidden layer L with N

neurons, and activation function φ:

• The input is output from previous layer L-1 (the activations), denoted:

AL−1 ∈ Rm×d, where m is the number of input samples, and d is the number

of input features of each sample. Number d is also equal to the number of

neurons present in layer L-1.

• Each neuron needs to have d weights, one for each input feature. A weight

matrix holding weights of all neurons in layer L can then be denoted as:

WL ∈ Rd×N .

• Each neuron also holds a bias term, all biases in layer L can be represented

with vector bL ∈ RN .

• Output matrix (the activations) returned by this layer can be denoted as:

AL ∈ Rm×N . This becomes input for the layer L+1.

A computation performed by an arbitrary hidden layer L with N neurons can be

calculated with Equations 3.17 to compute ZL ∈ Rm×N pre-activation values, and

3.18 - to compute output of layer L. Function φ is applied element-wise on all

elements of the input matrix.

ZL = XW + b (3.17)

AL = φ(Z) (3.18)
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The final output layer will then return the predicted output value for each sample.

At the beginning of the training, the output values will be almost random, but as

the training continues, the predicted values should converge towards the ground

truth values - this is the desired behavior [31, 1].

Cost function computation After the sample (or samples) are fed forward

through the network, we get either a matrix or vector of output values or a single

output value. The next step is to compute the error of the network using one of

the aforementioned cost functions, e.g., dice loss in the case of image data. The

error is then propagated backwards through the network, and weights and biases

are adjusted in a way that will minimize the cost function. This algorithm is called

backpropagation [31].

Backpropagation For a network to learn, it should implement some kind of al-

gorithm that will adjust its learnable parameters (weights and biases) in a way that

the overall error will be lower next time the input samples are fed forward through

the network. Backpropagation computes the gradients for each layer starting with

the output layer, and by utilizing the chain rule of calculus, it propagates the error

back through the network to the first hidden layer [1].

After the gradients are computed, the parameters are updated accordingly by

optimization algorithms such as stochastic gradient descent [35]. Formulas for

updating weights and biases are shown in Equations 3.19 and 3.20, where α is a

learning rate (which controls the speed of learning - if changes to the parameters

are too great, the minimum can be missed, if changes are too small, the minimum

will not be reached in a reasonable time) and E is the cost function [31, 1].
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w = w − α
∂E

∂w
(3.19)

b = b− α
∂E

∂b
(3.20)

There is a strict rule for backpropagation to work - all functions used in the network

must be differentiable at all points [26, 35].

3.3.1 Optimization and Regularization

Optimization Many optimization techniques are capable of further enhancing

the model training and performance. Examples include:

• using small batches of input samples, and after each batch passes, perform

parameter updates,

• utilizing momentum [42] to have more control over the learning speed based

on the previous gradients [35],

• using adaptive learning rates, where the learning rate α is usually great

at the beginning, and as the training progresses, it is gradually reduced

[35]. Updates to α can be done after some number of iterations by some

preset factor or automatically by utilizing methods such as Adam (adaptive

moments) [43] or RMSProp [44].

Regularization Another set of techniques that can improve model performance

is regularization. Usually, a model’s performance and prediction capabilities im-

prove during training. Available data are often split into three subsets for training,

validation, and testing. The model is trained using the training subset. The val-

idation subset is used to check model performance during training, and the test
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subset is used for the final evaluation of the model. It is important that both

validation and test subsets contain samples the model has not yet seen during

training - otherwise, the results would be biased. A good model should be ro-

bust and generalize well, not only learn patterns that are specific to training data.

Sometimes, especially in more complex models, we can observe an effect when, at

the beginning of the training, both training and validation performance (such as

error value) improve, but later the validation performance plateaus or worsens -

this effect is called overfitting [45] and is displayed in Figure 3.7.

Figure 3.7: Error curve during training - overfitting happens [35].

This effect is not desired because it means that the model cannot generalize well

on previously unseen samples - it is learning "by heart" from the training data. To

overcome this problem, we can implement several regularization mechanisms that

will improve the model’s robustness and ability to generalize. Examples include

dropout [46], transfer learning [47], early stopping [48], parameter norm penalties

such as L1 regularization (lasso regression) and L2 regularization (ridge regression)

[49], and more [35].

25



Chapter 3. Deep Neural Networks

3.4 Evaluation Metrics

When evaluating a model’s performance, different metrics exist that can be used.

The evaluation metrics also depend on the task the model was trained for. During

classification tasks, depending on the predicted and real values for each sample,

we can differentiate four groups of results:

• True Positives (TP) - a model assigns a sample to class c when a sample

belongs to class c,

• True Negatives (TN) - a model does not assign a sample to class c when a

sample does not belong to class c

• False Positives (TP) - a model assigns a sample to class c when a sample

does not belong to class c

• False Negatives (TN) - a model does not assign a sample to class c when a

sample does belong to class c

We will briefly describe some of the evaluation metrics in the following para-

graphs.

Accuracy, Precision, Recall, and F1-score Calculation of these basic metrics

is displayed in Equations 3.21, 3.22, 3.23, and 3.24. They describe the relationships

between the number of samples belonging to either the true positive (TP), true

negative (TN), false positive (FP), or false negative (FN) groups.
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Accuracy =
TP + TN

TP + TN + FP + FN
(3.21)

Precision =
TP

TP + FP
(3.22)

Recall =
TP

TP + FN
(3.23)

F1 Score = 2× Precision×Recall
Precision + Recall

(3.24)

Area Under the ROC Curve Receiver Operating Characteristics (ROC) Curve

and area under it can be used as another evaluation metric for classification and

is superior when compared to overall accuracy [50]. The ROC Curve is drawn

in the ROC Space as a relationship between the True Positive Rate (TPR, Re-

call or Sensitivity) and False Positive Rate (FPR) at the different threshold levels

[50, 51, 52]; the calculation of TPR and FPR is shown in the Equations 3.25 and

3.26.

FPR = Specificity = Recall =
TP

TP + FN
(3.25)

FPR = 1− Specificity =
FP

FP + TN
(3.26)

The ROC Space and an example of ROC Curve are displayed in Figure 3.8. Area

under this curve (AUC - Area Under the ROC Curve) is then computed and

interpreted:

• if AUC = 1, this is the perfect model

• if AUC = 0.5, model capability is equal to random guess
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• if AUC < 0, performance of the model is worse than the random guess

Figure 3.8: ROC Space with ROC Curve [51].

Intersection over Union Intersection over Union (IoU), also known as the

Jaccard Index, is a widely used evaluation metric in image segmentation and object

detection [53]. It is computed as the area of overlap between the predicted and

ground truth regions divided by the area of their union. The closer the resulting

value is to 1, the better the model predictions are [53]. Its computation is shown

in Equation 3.27, where y is the true area and ŷ is the area predicted by the

model.

IoU =
y ∩ ŷ

y ∪ ŷ
(3.27)

Dice Coefficient Similarly to the IoU, the Dice Coefficient is used for image

segmentation and detection tasks [2], and the closer the resulting value is to 1, the
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better the model predictions are. Its computation is given by the Equation 3.28,

where y is the true area and ŷ is the area predicted by the model.

DiceCoefficient =
2|y ∩ ŷ|
|y|+ |ŷ|

(3.28)

3.5 Architectures

Neural network architectures like Convolutional Neural Networks [27] and U-Net

[21] have proven to be effective in medical image analysis [35]. In recent years,

a concept of Vision Transformers [54, 2] used in medical imaging shows promis-

ing results [55, 2, 3]. In further sections, we describe each architecture and its

contribution to the analysis of medical images and Digital Pathology.

3.5.1 Convolutional Neural Networks

In 1959, Hubel and Wiesel conducted experiments that inspired the advent of the

Convolutional Neural Networks (CNN). In their experiments, they put a micro-

electrode into a cat’s brain (into the part called the primary visual cortex), while it

was under partial anesthesia. While showing various images to it, they measured

the neurological activity of the cortex [56]. According to the results, a hierarchical

pattern can be observed in the activity of the visual cortex, where the neurons

close to the retina captured the simplest patterns (like different illuminations and

lines under various angles) and the farther layers captured more complex patterns

(like geometric shapes and other complex visual patterns) [56].

CNN took advantage of these findings and rebuilt the classical neural network

layers to be able to capture more complex features with increasing depth. They
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utilize so-called convolution layers along with the ReLU activation function to

learn to extract relevant features from the image. The deeper the convolution

layer, the more complicated features it can learn [35].

Similarly to the Hubel and Wiesel cat’s visual cortex, the first layers can learn to

identify basic shapes like lines and simple geometric shapes, and the deeper layers

can learn to identify more complex ones. Such an example of CNN is shown in

Figure 3.9.

Figure 3.9: Example of CNN learning strategy [35].

A convolution layer applies a series of operations on its input and produces an

output map. The most important part is applying a kernel, which is a tensor

of fixed width and height, over the input image or output map from the previ-

ous convolution layer. This fundamental operation serves as a feature-extracting

technique. The kernel slides over its input across its height and width, and at

each step, it performs element-wise multiplication of the pixel values it currently

overlaps at each layer of depth and then sums them together to produce a single

value. So, for example, if the input is of size 100×100×3 (standard RGB image

with 3 channels for red, green, and blue color), then the kernel is applied to all
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three channels simultaneously. After the kernel is applied to the whole image, the

resulting output map will be of size 100×100×1 (assuming that other hyperpa-

rameters of convolution are configured in such a manner that the original width

and height remain unchanged for the output map - we will cover them later in this

chapter), because the kernel will collapse its depth.

The kernel filters can be handcrafted to multiply and intensify certain properties

of the image. Examples include the Prewitt, Gabor, Sobel, Laplacian, and Roberts

filters for edge and gradient detection. In standard image processing, the weights

inside the kernel are preset. However, in the CNNs, these weights are learned

during training, so the network determines what features of the image the output

maps will be focused on, and hence the network can be more effective [35, 3].

In the AlexNet [57], the first deep CNN which outlined the original structure, a

ReLU activation function was applied to the value obtained from the convolution

operation to break the linearity of the operation. Since then, using an activation

function after the convolution operation has become a standard practice [35, 3],

and the name of the output produced by the convolution + ReLU is also called

an activation map.

According to the [35], convolution operation can be expressed as a function with

hyperparameters: φconv(Cin, Cout, K, S, P,D). The definition of these hyperparam-

eters is:

• Cin is the number of channels of the input map - its depth.

• Cout is the number of channels of the output produced by the layer - it is

also the number of filters that will be applied to the input map since one

filter produces an activation map with one channel.

• K is a tuple that defines the size of the kernel - its width (kw) and height
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(kh)

• S is also a tuple, which defines the stride - the number of pixels the kernel

will slide along, both in terms of width and height.

• P can also be a tuple and it defines the number of added dummy pixels to

artificially increase the input map size for the output map to keep the same

size as the input map (otherwise the output map would be smaller since the

kernels cannot slide outside of the boundary of the input map).

• D (a tuple as well) is the dilation, and it serves the purpose of increasing the

field of view of the kernel (the area of the image it can cover) without adding

more weights to it. Dilation defines the gap that is added both horizontally

and vertically between the weights of the kernel.

We can see an example of the convolution in the Figure 3.10.

Figure 3.10: Example of the convolution operation [35].

The field of view of a single kernel is small, as typically kernels of size 3× 3,

5×5, or 7×7 are used [35]. To address this issue and to be able to build up and

capture more complex features in the subsequent layers, the pooling layer is often

added. The pooling layer effectively downsamples the feature maps, commonly by

a factor of two. This allows the next convolution layers to learn more abstract

features that were further apart in the previous feature map. To compensate for

32



Chapter 3. Deep Neural Networks

the information lost during the downsampling, usually a number of independent

kernels is increased for the next convolutions after each pooling layer. During

pooling, a small array slides over the input map and always selects only a single

value from the area it covers, hence decreasing the size of the map. Two pooling

methods are common:

1. Max pooling selects the maximal value from the area it covers, and

2. Average pooling computes the mean from the values it covers.

Example of pooling, both max and average, can be seen in the Figure 3.11.

Figure 3.11: Example of max and average pooling operations [35].

CNNs are usually organized as repeating layers of convolutions, followed by the

ReLU activation function, and then the pooling layer. The output can then be fed

into another convolution, and a deep CNN can be built using this approach. There

is a rule of thumb [14], where we start with a small number of independent filters

with a small field of view, and then we downsample the image by the factor of two

(to increase the field of view) and double the subsequent number of independent

filters as can be seen in Figure 3.12.
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Figure 3.12: Scale space pyramid of a CNN [14].

In CNNs with very large depth, a concept of a skip connection, first introduced in

the [58], can be used. A skip connection allows the input of a layer to bypass the

convolutions and then be added to their result, as shown in figure 3.13. Also, if we

can represent a series of convolutions with a function φ(x), then the output with

skip connection included would be given by y = φ(x) + x. This residual learning

architecture can mitigate the problem of vanishing gradient in very deep CNNs

[35].

Figure 3.13: A building block of residual network [58]

Other strategies that can improve the performance of CNNs include batch-normalization

layers [59](which are inserted after the convolution layers) and the utilization of

parallel branches [60] (which use different kernel sizes to compute multi-scale fea-

ture maps by concatenating their output maps).
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After the series of convolutions and downsampling, the final compressed feature

representation of the image needs to be flattened (converted into a vector) so it

can serve as an input for the fully connected layer(s), which will then make the

appropriate decision based on the task the model should do. Two methods exist

[35], which we can use to convert the image descriptor into a vector:

1. Reshape the activation maps to form a one-dimensional tensor [57, 27].

2. Use average pooling on the entire activation map, which will collapse the

entire information into a single value and then concatenate these values to

form a vector. For N activation maps, we will get a vector with N elements

[58, 60].

We can see their visual representation in Figure 3.14.

Figure 3.14: Different flattening strategies [35].

An example of a CNN with all layers is in Figure 3.15. The input image features are

extracted by the convolution layer with four independent 5×5 kernel filters, followed

by the ReLU activation function and max pooling layer. Then the extracted image

descriptor is flattened into a vector and fed into fully connected layers, which serve

as the classification output head.
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Figure 3.15: Example of CNN architecture [35].

Many CNN architectures introduced new concepts in the field of computer vision

and image analysis when they were presented. Considering today’s knowledge and

advancements, some of them might look trivial, but their contribution should not

be overlooked. In the classification task, we can mention:

1. LeNet5 [27]: uses a series of convolution and pooling operations to extract

the image features and fully connected layers to classify the input. It was

introduced as a model that should recognize handwritten digits.

2. AlexNet [57]: built on top of the LeNet, utilized a deeper architecture along

with ReLU activation functions, and had immense success at the ImageNet

Large-Scale Visual Recognition Competition. This success brought huge

attention to the CNNs and their potential in image analysis-related tasks.

3. VGGNet [61]: introduced a strategy of expandable convolutional blocks,

where in each block a varying number of convolutions can be used. Each

block is then followed by the max pooling layer. This allowed for tailoring

the network to reflect the complexity of the problem it was assigned to solve.

4. GoogleLeNet [60]: used kernels of varying sizes to extract features from the
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input maps and then concatenated their output maps to create a depth-wise

combined feature. It also used the full-scale average pooling in the final

feature extraction layer to create a one-dimensional tensor. Furthermore, it

utilized auxiliary classifiers in the intermediate layers to boost the gradient

flow. The later version, called Inception Net, introduced more concepts, like

kernel factorization and batch normalization [62].

5. ResNet [58]: introduced a strategy of skip connections to solve the problem

of vanishing gradient in very deep CNNs.

In the detection task, two main architectures were created, namely the Region-

based CNN [63] (further upgraded to the Faster R-CNN and Mask R-CNN [64])

and the You Only Look Once (YOLO) [65].

Both R-CNN and YOLO can localize objects in an image with a bounding box

label. However, sometimes we want to obtain a more precise location of the object,

and this is where segmentation comes into play.

3.5.2 U-Net and Its Variants

To perfectly localize an object in an image, we would like to construct a pixel-

level mask that would mark the pixels where the object is present. We can use

classification for this - each pixel can either be classified as one that does or does

not display a part of the object. Segmentation algorithms have a deep impact and

huge potential for medical imaging and digital pathology, where they can be used

to mark different tissue types, organs, cells, and tumor regions [14].

The limitation of full CNN architectures is the inability to preserve the spatial

information after the initial feature-extracting layers [14]. This issue is addressed

in a new type of architecture, the encoder-decoder architecture. This architec-
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tural type, also known as the autoencoders or auto-associative networks, was first

introduced in the [66]. Its visual representation is shown in Figure 3.16.

Figure 3.16: Example of the autoencoder architecture [35].

It consists of two main parts:

1. The encoder part, which is responsible for encoding the input image and

extracting the most descriptive features, compressing them, and reducing

the redundancy, and

2. The decoder part is responsible for reconstructing the original input image

from the compressed image descriptor.

The loss function computes the difference between the original input image and

the image constructed by the decoder. If the decoder is able to create an image

that looks very similar to the original, it means that the hidden representation of

the image extracted by the encoder is credible enough. Then the decoder part can

be removed and instead, a classification, segmentation, or localization module can

be attached and exploit the features learned by the encoder [35].

In segmentation tasks, a simple change is added to the decoder part. Instead

of generating the original image, it is trained to create the segmentation mask,

where each pixel has a probability of belonging to a certain class. This computed

probability distribution mask is used along with the original mask in the loss

function to compute their difference and guide the training.
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When the activation maps are downscaled in the encoder using operations such

as max pooling, where only a single value is picked, we need a correct mechanism

to reconstruct the original spatial position of that value during the upscaling of

the maps. This can be achieved by remembering and forwarding the indices of the

chosen value, as it was first introduced in the SegNet architecture [67].

One of the most widely adopted and impacting architectures is the U-Net model

[21]. U-Net was designed as a model for medical image segmentation tasks and

achieved great success in doing so [14, 68]. Its architecture can be seen in Figure

3.17.

Figure 3.17: U-Net architecture [68].

Similarly to autoencoders, it has two main parts, the encoder and decoder. The

encoder works as a classical CNN feature extractor, with convolutions, ReLU ac-

tivation functions, and max pooling. In each layer, there are two convolutions

(kernel size is 3×3), followed by the ReLU, and the resulting activation maps are
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downsampled by a factor of two using the max pooling layer (with 2×2 matrix).

Before the downsampling happens, the copy of the activation maps is sent to the

decoder (skip connections). Every next block doubles the number of channels.

This is repeated four times until we reach the bottleneck, where we again perform

the convolutions with ReLU, but omit the downscaling. At this point, the features

of the input image are in their most compressed form. Output from the bottle-

neck is then sent to the decoder part. Next, the decoder part uses up-convolutions

(kernel size is 2×2), to expand the feature maps (double their size) and halve

the number of channels. Particularly, these up-convolutions are distinctive when

comparing U-Net to other architectures [68]. The activation map is upscaled by

up-convolution, and then the activation maps, previously sent from the encoder,

are concatenated with it. The concatenation is a required step since the border

pixels are lost in every convolution (the convolutions do not use padding), and

also to reintroduce some information that might be lost during the downsampling.

Then again, two 3×3 convolutions with ReLU are applied. This is also repeated

four times, to reflect the encoder blocks. This approach can be visually drawn into

a U-shape-like architecture, from which the U-Net derived its name. Finally, after

the last decoder block, the 1×1 convolution is used to get the desired number of

channels.

Since the original U-Net, many different variants of it have been introduced [68].

To list a few examples:

• 3D U-Net [69]: works as a classical U-Net but was modified in a way that it

can segment 3-dimensional data. Every 2D operation (2D convolution, 2D

pooling, 2D up-convolution) was replaced by its corresponding 3D equiva-

lents. It can be useful in medical images that utilize 3D space, like MRI and

CT.
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• Attention U-Net [70]: utilizes the attention gate to draw the attention of

the network to the important parts of the image. These attention gates are

inserted in a place where the concatenation of encoder feature maps and

decoder feature maps should occur, as can be seen in Figure 3.18. Before

this concatenation happens, both sets of feature maps are run through the

attention gate, where a series of operations is performed. These operations

are visualized in Figure 3.19. Firstly both sets are run through a 1×1×1

convolution to align their dimensions and then are added together. Then

they pass through the ReLU activation function, 1×1×1 convolution layer to

reduce their depth to 1, the sigmoid activation function to squeeze the values

between 0 and 1, and an optional resampler to correctly align the spatial

dimensions. This results in an attention map containing values between 0

and 1 and with a depth of 1. This attention map is then broadcast and

multiplied by the feature maps from the encoder - this produces the final

output of the attention gate, which is then concatenated with the feature

maps upsampled by the decoder.

Figure 3.18: U-Net architecture with added attention gates [70].
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Figure 3.19: Additive attention gates [70].

• Residual U-Net is inspired by the [58] and uses the skip connections within

each block to help the gradient flow and address the problem of vanishing

gradient.

Many more U-Net variants exist that we do not explain further in this work, for

example, the Inception U-Net, Recurrent U-Net, Dense U-Net, Adversarial U-Net,

Ensemble U-Net, and U-Net++, each showing potential in various medical imaging

domains, from CT and MRI scans to radiology, cytology, and histology [68].

3.5.3 Vision Transformers

CNNs were for a long time considered the dominating architectural pattern in

deep learning tasks related to visual data, similar to the RNNs being dominant

in sequential data processing, such as natural language processing (NLP) [71].

When the Transformer architecture was proposed in [71], things began to change.

Nowadays, transformer-based architecture is prevalent in the NLP field [55], and

with the introduction of Vision Transformer in [54], it seems that transformers

can be applied in computer vision as well and potentially compete with CNNs

[2].

Vision Transformers (ViTs) build on the success of Transformers in NLP tasks

[54, 55]. Transformers utilize the attention mechanism that is able to capture a
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global context of the input data and is not limited by the distance of the pixels,

as was the case with CNNs [55]. ViTs took advantage of the standard transformer

encoder part, which can be seen in Figure 3.20. The encoder connects multiple

attention blocks to make use of the global image context.

Figure 3.20: Vision transformer architecture for classification [55].

Below, we briefly mention the ViT algorithm as described in [55]:

1. The input image is split into patches with fixed sizes, for example, authors

in [54] used a patch size of 16×16 pixels

2. Image patches are converted by flattening into the vector space

3. To reduce the dimensions of the resulting embeddings, vectorized patches

are run through a trainable linear layer

4. Since transformers are not aware of the spatial information, positional infor-

mation is added to each vectorized embedding

5. This sequence is then fed into the encoder

6. Since ViTs require a huge amount of data to perform well, it is a great idea

to pre-train the ViT on a large dataset and then fine-tune it to the specific

task.
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7. In classification tasks, an extra embedding is added, which will be learned

during training - the class embedding.

The self-attention mechanism and multi-head self-attention are the key compo-

nents of ViT’s success. The self-attention mechanism allows the model to figure

out the importance of a patch embedding with respect to all the other patch

embeddings of the image. The multi-head self-attention is composed of multi-

ple self-attention units (also called heads), where each head is independent of the

other heads. In the end, their outputs are stacked onto one another and passed

through another linear layer. Skip connections facilitate better gradient flow and

are added after the multi-head attention unit and before the final output. The

produced output can serve as input to another attention block, hence a deep net-

work can be constructed. This allows the model to capture complex relationships

and dependencies across the input embeddings [55].

Vision Transformers have achieved great success along with CNNs in many ap-

plications of the medical imaging domain in tasks such as medical image classi-

fication, segmentation, restoration, synthesis, medical object detection, and more

[55].
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Related Work

Precise manual cell annotation on huge WSI slides is a laborious task that needs to

be performed by skilled expert pathologists. There exists a large number of models

trained on the pixel-level masks for cell segmentation, which perform remarkably

well. In the field of weak supervision for cell segmentation, a number of studies

focus either on weak supervision in the form of point annotations in H&E slides or

weak supervision with bounding box annotations of cells in microscopic imaging or

DNA cytometry. However, we did not find many studies focusing on weakly anno-

tated cell segmentation, especially from the histopathological H&E-stained slides,

when annotations were presented in the form of bounding boxes. Furthermore,

our task is specific in the fact that we are not interested in the segmentation of all

cell nuclei, but only in segmenting nuclei of lymphocytes. Therefore, to compre-

hensively review the current state of research, we will first examine studies that

utilize bounding box cell annotations in histology. Subsequently, we will explore

selected papers focusing on cell annotations using bounding boxes in modalities

other than histology, as well as those addressing weakly supervised cell segmenta-

tion in histology employing point annotations of cell nuclei.
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4.1 Guided Prompting in SAM for Weakly Super-

vised Cell Segmentation in Histopathological

Images [72]

The authors of this work explore the applicability of the Segment Anything Model

(SAM), using guided prompting, to the cell segmentation task from histology im-

age slides, where the cells are only annotated using bounding box labels. Their

results outperformed other models for weakly supervised segmentation by a huge

margin.

Three different datasets were used, and since each dataset was annotated with

pixel-level masks, these were converted into the bounding boxes for the purpose of

this study and the segmentation mask labels were not used during the training. If

the dataset also contained class labels for individual cell nuclei, these labels were

not used as this study is not concerned with cell classification. The datasets used

were:

1. ConSep dataset, containing 41 H&E stained WSIs, each having 1000×1000

pixels. The images are of single cancer and colorectal adenocarcinoma. To-

gether, there are 24,319 annotated cells, split into three different categories

(inflammatory, epithelial, spindle). For this work, each image was split into

four patches, each patch having 500×500 pixels. Then 98 of these patches

were used for training, 10 for validation, and 56 for testing.

2. MoNuSeg is a multi-organ cell segmentation dataset containing 51 H&E-

stained images of different organ tissue (stomach, bladder, breast, liver, kid-

ney, prostate, colon). Together, the images have 28,846 annotated cell nuclei.

Similarly to the ConSep, each 1000×1000 image is split into four 500×500

patches, 133 of them used for training, 15 for validation, and 56 for testing.

46



Chapter 4. Related Work

3. TNBC dataset of 50 512×512 WSIs of triple-negative breast cancer tissue.

In total, it contains 4,022 annotated cell nuclei. 34 images were used for

training, 5 for validation, and 11 for testing.

Two main approaches were used. During the first, called D-SAM, a YOLO ob-

ject detector was trained to generate the bounding boxes of cells, using a sum of

three losses (objectness loss - Lobj, classification loss - Lcls, and localization loss

- Lloc). During the inference (the testing, at the time of prediction) the image

along with bounding boxes predicted by the detector model were embedded and

fed to the SAM to predict the segmentation masks (with bounding box predicted

labels as guiding prompts). The second approach, called SAM-S, used SAM as a

pseudo-label generator. Both images and corresponding ground truth labels were

embedded and fed to the SAM and its output segmentation masks were then used

as pseudo-labels to train a separate segmentation model with combined Dice loss

(Ldice) and binary cross entropy (LBCE). Both approaches can be seen in Figure

4.1.

Figure 4.1: Workflows with SAM [55].

In addition to these, three more strategies were used, namely:

1. SAM-W, where SAM was fine-tuned using weakly supervised losses

2. SAM-M, where the mask generated by the SAM-S approach is used as a
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guiding prompt for another SAM prediction

3. SAM-ILP, where an Integer Linear Programming is used as a post-processing

technique to align the results obtained from both the D-SAM and SAM-S

approaches

Different prompting methods were used, and also a no-prompting case, where only

an image was provided, was used. In the 1P-kN scenarios, one positive and k

negative points were used for each bounding box, where the positive point was

the center of the bounding box, and negative points were outside of the bounding

box and were not part of any other bounding box. All of the prompting methods

are summarized in Figure 4.2, where we can see that the bounding box prompts

achieved the best Dice scores in most cases.

Figure 4.2: Different prompting methods used for SAM.

Mean average precision (mAP), precision, and recall were used as evaluation met-

rics for object detection, and the Dice coefficient was used as an evaluation metric

for segmentation.

Two non-SAM models were used as baselines for comparison, the BBTP and BB-

WSIS, both based on the Residual U-Net architecture, trained for 50 epochs and

a learning rate of 0.0001. Yolov8x was used as the object detector, trained for 300

epochs with early stopping, batch size 32, and decreasing learning rate (starting at
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0.01 and decreasing by a factor of 10). The CaraNet was used as the segmentation

model. It uses reverse axial attention and has great performance for small objects.

It was trained for 200 epochs, with Adam optimizer, learning rate 0.0001, and

early stopping. The experiments were carried out using NVIDIA-RTX 5000 and

Tesla A100 GPUs.

From the results displaying the Dice scores shown in Figure 4.3, we can see that

both SAM-S and D-SAM outperformed the baseline models, and the overall best

results were achieved by the SAM-ILP model.

Figure 4.3: Comparison of used models with Dice scores.

4.2 A pathomic approach for tumor-infiltrating lym-

phocytes classification on breast cancer digital

pathology images [73]

The second study aimed to classify TILs in H&E-stained images of breast cancer

based on a handcrafted set of features, to achieve a better model explainability.

Even though the main focus of this study is different from our goals, it is relevant

and interesting for us for two reasons:

1. it uses the same TIGER dataset [15] as we do, and
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2. it uses a watershed-based method to segment cell nuclei within the tissue as

a preprocessing step.

The dataset contains 195 WSIs scanned at three different institutes. They contain

region of interest (ROI) annotations of both tissue types and TILs. TILs were

annotated using point annotations and a bounding box of 8×8 µm was constructed

and centered on the point.

In the preprocessing step, the authors applied a stain normalization proposed in

[74] and watershed-based cell nuclei segmentation. The authors decided to use this

method for its simplicity, speed, and easy parameter adjustments and fine-tuning.

The method used mathematical operations. They used the implementation from

the QuPath digital pathology tool with the following set of parameters:

• The setup parameter: hematoxylin OD for the detection image, pixel size of

0.5µm

• Nucleus parameters: background radius 8µm; median filter radius 0µm; σ =

1.5µm; minimum cell area 10µm2; maximum cell area 400µm2

• Intensity parameters: threshold 0.1; maximum background intensity 2

The resulting segmentation masks were verified by an expert microscopist. This

method was applied to 1037 ROIs, where 92,141 cell nuclei were segmented; 20,111

of them were TILs.

The study further worked on the TIL/non-TIL classification task and identifying

the relevant features, but since this is not our primary interest, we only briefly

describe the methodology and results. The study analyzed 71 features split into

five groups (6 Fourier Shape Descriptors features - FSD, 8 gradient features, 26

Haralick features, 12 intensity-based features, 19 morphometry features). Out

of them, 21 were selected as pathomic features. These should best describe the
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properties of TILs. Then, five different classification models (Random-Forest,

Decision Tree, Linear Discriminant Analysis, K-Nearest Neighbors, Multi-layer

Perceptron) with three different resampling techniques (none, synthetic minority

oversampling technique - SMOTE, Down) were trained using these features. The

AUC (area under the ROC curve), accuracy, precision, sensitivity, specificity, and

F1-score were used as evaluation metrics. The Random-Forest classifier achieved

the best result with an AUC of 0.86, where the resampling technique did not make

a significant difference.

4.3 DDTNet: A dense dual-task network for tumor-

infiltrating lymphocyte detection and segmen-

tation in histopathological images of breast can-

cer [75]

The third work introduces a dense dual-task network (DDTN), which is used both

for TIL detection and segmentation in breast cancer H&E-stained images using

only point annotations. These two modules share the same backbone, which allows

them to learn from one another and promote each other. The ultimate goal of this

network is to perform a precise TIL instance segmentation.

The training and testing workflows of the network can be seen in Figures 4.4 and

4.5. During the training phase, the network produces three output types for cells -

bounding boxes, cell contours, and cell masks. The separate semi-automatic tool is

used to create segmentation masks, from which bounding boxes and cell contours

are derived. These are then used to guide the training of the model. During the

inference phase, a network is used to produce the aforementioned three types of
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output again. Cell masks and contours are then unified to create cell segmentation

masks, and these are further merged with the detection bounding boxes to provide

the final output.

Figure 4.4: DDTN workflow during training.

Figure 4.5: DDTN workflow during inference.

A detailed architecture of the DDTN model and each of its key components, like the

backbone model, segmentation and detection modules, and feature fusion module,
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can be seen in Figure 4.6.

Figure 4.6: DDTN architecture.

The study uses two publicly available datasets and creates a new one with the use

of their semi-automatic mask generator, which the authors called TILAnno. The

datasets used were:

• BCa-lym dataset: containing 100 H&E stained ROIs of size 100×100 pixels.

3,064 cells with point annotations are present on them.

• Post-NAT-BRCA dataset: contains H&E-stained WSIs with manual anno-

tations of different cell types. For this study, 29 WSIs were selected and

740 ROI patches of size 100×100 pixels were used, together containing 4,488

dot-annotated lymphocytes.

• TCGA-lym introduced dataset: authors used 15 H&E stained WSIs from

The Cancer Genome Atlas (TCGA), extracted ROIs of size 1600×1600 and

let two junior pathologists annotate the lymphocyte centers and then a single

expert refined them. In total, 5,029 cells were annotated. For the training,
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each ROI was divided into 64 200×200 patches.

Each dataset originally contained dot annotations of lymphocytes. The authors

used the TILAnno tool to generate pixel-level masks, contours, and bounding

boxes.

During the training, the input images were first resized to 320×320 pixels, and

different augmentation techniques were used (mirror, flip, light noise, brightness,

and color conversion). ResNet101 was used as a backbone network, and it was

pre-trained on the ImageNet dataset. The training hyperparameters were set in

the following fashion: 1000 epochs with stochastic gradient descent, batch size of

4, an initial learning rate of 0.0001, and decreased by a factor of 10 at the 500th

and 750th epochs; weight decay was set to 0.01 and momentum to 0.9.

Evaluation metrics were split for detection and segmentation tasks. In the lympho-

cyte segmentation task, the Dice score, Aggregated Jaccard Index, and panoptic

quality were used. In the lymphocyte detection task, the precision, recall, and

F1-score were used, where the truthfulness of the positivity of a sample was deter-

mined by the IoU threshold set to 0.5 in case of TP/FP and FN if the bounding

box does not intersect any ground truth bounding box.

For the evaluation of the TILAnno tool, the authors compared it to two other tools

used for weak cell segmentation, namely QuPath and Cell Profiler. They ran all

three tools on all three datasets, then let two experts manually label lymphocyte

boundaries on 20 randomly selected images, which were used for evaluation with

expert labels as ground truth. The TILAnno tool (Ours) seemed to outperform

the baseline tools by a great margin in the Dice score, as can be seen in Figure

4.7. The study further analyzed the model performance of their proposed solution

with other baseline models during inference, and from Figure 4.8 we can see that

their model outperformed the in all metrics except time.
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Figure 4.7: Comparison of TILAnno and baseline tools.

Figure 4.8: Comparison of DDTN and baseline models.

Moreover, the study also evaluated the model’s ability to generalize by training
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it only on the BCA-lym and Post-NAT-BRCA datasets and evaluating it on the

TCGA-lym dataset. The results are summarized in Figure 4.9, where we can

see that their model again outperformed the existing baselines in all used met-

rics.

Figure 4.9: Comparison of DDTN and baseline models in generalization.

4.4 Nuclei segmentation with point annotations from

pathology images via self-supervised learning

and co-training [76]

In the fourth work. The authors present a self-supervised approach that gen-

erates segmentation masks from point annotations of cell nuclei in H&E-stained

images.

Two datasets were used, and since each dataset was annotated using pixel-level

annotations, these were converted to point annotations that were set approximately

to the center of each mask. The datasets were:
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• MoNuSeg dataset, which we already mentioned earlier in this chapter. 24

images were used for training, 6 for validation, and 14 for testing.

• CPM dataset, containing 32 500×500 or 600×600 H&E stained images of

four tumor types. 20 images were used for training, 4 for validation, and 8

for testing.

All the images for training were cropped to 250×250 patches with 125-pixel overlap

for training - these are then randomly cropped further into 224×224 sub-patches,

rotated, flipped, and zoomed. The images used for testing are cropped to 224×224

patches with 80-pixel overlap.

Their method contains three modules:

1. Segmentation of nuclei with rough (not very precise) labels. Initial pixel-level

masks are generated as follows: From point annotations using a Voronoi di-

agram and k -means clustering the Voronoi labels (a division of the image

into convex polygons) and cluster labels (3 clusters in total - nuclei, back-

ground, ignored area) are generated. The H-component image is separated

from the original H&E-stained image. Then, the Residual U-Net network

is trained using the Voronoi and cluster labels with cross-entropy loss to

generate coarse pixel-level masks.

2. Next in the co-training strategy, two segmentation networks are trained,

where they supervise each other. The training data is split into two parts,

and each network is trained with one part. Apart from the two mentioned

labels, each of them also uses pseudo-labels generated by the other network,

which are stabilized using exponential moving average (EMA), where the

averaged predicted labels are used to label the ignored area of the cluster

label. The co-training loss is given by the Kullback-Leibler divergence.
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3. The self-supervised representation learning employs two U-Nets in sequential

order, where the first U-Net computes the nuclei probability map (using the

H-component images) and the second then reconstructs the colorized image

from these maps.

To integrate all of these modules, a final model is proposed. It has two networks,

which are co-trained using Voronoi, cluster, and each other’s labels (with the

EMA stabilization) and colorization loss. Each network consists of two U-Nets,

the segmentation U-Net and the colorization U-Net. The ResNet-34 is used as a

backbone network, pre-trained on the ImageNet dataset. The training hyperpa-

rameters were set as follows: initial learning rate of 0.001 reduced by a factor of 10

every 30 epochs, Adam optimizer, and weight decay set to 0.0005. The colorizing

network part is discarded during inference, and only the segmentation part is used.

The full architecture can be seen in Figure 4.10.

Figure 4.10: The architecture of the proposed model.

Pixel accuracy, F1-score, Dice coefficient, Aggregated Jaccard Index, Detection

Quality (DQ), Segmentation Quality (SQ), and Panoptic Quality (PQ) are used
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as the evaluation metrics. From Figure 4.11 we can see that the proposed network

achieved better results on both datasets in almost all metrics when compared to

other state-of-the-art models trained for weakly supervised nuclei segmentation

with the same set of hyperparameters.

Figure 4.11: The architecture of the proposed model.

4.5 Weakly Supervised Deep Nuclei Segmentation

With Sparsely Annotated Bounding Boxes for

DNA Image Cytometry [77]

The last work focuses on segmenting cell nuclei in DNA image cytometry from

bounding box annotations using a teacher-student network setup.

Two datasets were used:

• DNA-ICM database, contains 23,485 images of cervical cancer screening

stained with feulgen and eosin. Each image has 4096×2816 pixels. To-

gether, the dataset contains more than 1M cell nuclei. 18,266 images were

selected for training and validation, and 5,219 for testing. The authors used

a semi-automated approach to get pixel-level masks for the test set. For the

training and validation sets, they initially generated the pixel-level masks

with traditional methods and then let experts refine them.

• ISBI14 dataset, containing 16 real and 945 synthetic images of cervical cy-
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tology. 8 real and 45 synthetic images were used for training, while the rest

were used for testing.

Firstly, pseudo-masks are generated for each available bounding box by cropping

out the box area and applying traditional segmentation methods, namely Otsu, K-

means, and GrabCut. These initial pseudo-labels, along with the bounding boxes,

are then used to train the teacher model. It produces pseudo-labels in the form

of refined masks for ground truth nuclei labels (bounding boxes), and bounding

boxes and masks for unlabeled nuclei. The student model then uses the ground

truth labels and teacher-generated pseudo labels to further optimize the loss. The

loss, combining the supervised, weakly supervised, and unsupervised losses, is used

for the training of the student model.

Both the teacher and student models share the ResNet-50 with a feature pyramid

network (with discarded level P6) as a backbone. The backbone is initialized with

weights pre-trained on the ImageNet dataset. It is used to extract ROI features.

Then both have the same architecture, the Mask R-CNN, which is, in total, trained

for 32,000 iterations. The first 16,000 iterations are used to train the teacher

model. Then the pseudo-labels generated by it are used for training the student

model. The student model is initialized with the weights of the teacher model. The

architecture can be seen in Figure 4.12. The training hyperparameters were set

as follows: weight decay of 0.0001; momentum of 0.9; initial learning rate of 0.01,

and decreased by a factor of 10 after the 20000th and 27000th iterations.
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Figure 4.12: The architecture of the teacher-student model.

Precision, recall, pixel-level IoU, and Dice coefficient were used as evaluation met-

rics for nuclei segmentation. For cell detection, the average precision and recall

over different IoU thresholds were used.

The comparison of results compared to other state-of-the-art weakly supervised

methods can be seen in Figures 4.13 for segmentation and 4.14 for detection on

the DNA-ICM dataset, where it achieved the best results compared to the other

methods in all metrics but recall. Figure 4.15 displays results comparison for

segmentation on the ISBI14 dataset. Since this dataset is fully annotated with

pixel-level masks, the authors used these (either 100% of them or 50% of them)

to generate the pseudo-labels. The model trained on this dataset was trained only

for 100 epochs in total, 50 of which were for the training of the teacher model.

Again, their solution seemed superior in most of the metrics when compared to

the other models.
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Figure 4.13: The comparison of results for segmentation on the DNA-ICM dataset.

Figure 4.14: The comparison of results for detection on the DNA-ICM dataset.

Figure 4.15: The comparison of results for segmentation on the ISBI14 dataset.
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Our Work

5.1 Overview

This work presents a method dealing with challenges where we have a fully an-

notated dataset, however, very small in size (TNBC dataset [78]), and a large

dataset but weakly annotated (TIGER dataset [15]). We aim to overcome these

challenges by implementing a hybrid approach for the semantic segmentation of

lymphocyte cells. The overview of the whole approach is displayed in Figure 5.1.

The hybrid method consists of a preprocessing module, which prepares data for

training and evaluation; then the pseudo-mask creating module, which creates the

pseudo-masks for the TIGER dataset images. The resulting image patches are

then used for the training of the deep learning segmentation model, which we

describe in Section 5.3.
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Figure 5.1: The overview of our hybrid approach for semantic segmentation.

Firstly, we try to train and validate a model on the small dataset itself. Then

we use preprocessing and computer vision techniques to generate various pseudo-

mask sets out of bounding-box annotations for the weakly annotated dataset and

train a model on it, which is again validated on the small, fully annotated dataset.

Then we try to identify and select the best fusing strategy for the mask sets, to

utilize different abilities of the sets to capture the cell region. Next, we select the

best model (with the most successful mask-fusing strategy) and fine-tune it using

a portion of the data in the fully annotated dataset. We evaluate each of these

experiments with the Dice coefficient and IoU. We start with the fundamental part

- the description of the datasets used.
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5.2 Datasets

TIGER In our work, we use the Tumor Infiltrating Lymphocytes in Breast

Cancer - TIGER - dataset, which was released with the challenge under the same

name on the Grand Challenge platform [15]. It contains H&E-stained WSIs of

HER2-positive and TNBC breast cancer tissues obtained by core needle biopsies

or surgical resections. The images were scanned using 20x magnification. The

dataset is released in three formats. We work with the one called WSIROIS. The

WSIs come from three different institutions:

1. TCGA (151 WSIs) dataset, which contains images of TNBC from the TCGA-

BRCA archive, annotations, and magnification, was adopted to be in line

with those used further.

2. RUMC (26 WSIs) images of both TNBC and HER2-positive breast can-

cer obtained from Radboud University Medical Center in the Netherlands,

annotated by a panel of board-certified pathologists.

3. JB (18 WSIs) images of both TNBC and HER2-positive breast cancer ob-

tained from Jules Bordet Institute in Belgium, annotated by a panel of board-

certified pathologists.

The RUMC and JB WSIs contain 3 annotated ROIs with a size of approximately

500×500 µm. The WSIs obtained from TCGA are more specific. This dataset

was created by merging two other datasets: the BCSS (151 WSIs) and the NuCLS

(124 WSIs). The NuCLS is a subset of the BCSS dataset. In the BCSS dataset,

the tissue in a single large ROI is annotated, but no cells are annotated. In the

NuCLS, a variable number of smaller ROIs are selected within the large ROI

(same large ROI as in the BCSS), and these are densely annotated for multiple

cell types. Annotations are adapted to match the other used annotations, as was
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mentioned.

The WSIROIS format contains:

• WSI level annotations, wherein each WSI contains manual annotations of

ROIs. Different tissue types are annotated with polygons, namely: invasive

tumor, tumor-associated stroma, in-situ tumor, healthy glands, necrosis not

in-situ, inflamed stroma, and rest. Most ROIs have also annotated plasma

cells and lymphocytes. These were annotated using point annotations and

then a bounding box was constructed and centered on the point of annotation

with the size of 6×6 µm, 8×8 µm, or 9×9 µm. Annotations for WSIs are

released in XML format and also as a multi-resolution TIF image.

• ROI level annotations, where authors cropped the ROIs from WSIs and

stored them as PNG files. Tissue type annotations are released as PNG

images, containing pixel-level masks, and cell annotations are released in

the COCO format - a JSON file containing file paths (the PNG images of

ROIs) with IDs and metadata and corresponding annotations of bounding

box position and size.

We further work with the part of the dataset that has ROI-level annotations.

This part of the dataset consists of 1,879 (1,744 from TCGA, 81 from RUMC, 54

from JB) ROIs cropped from 44 (124 from TCGA, 26 from RUMC, 18 from JB).

Together, they contain 30,524 annotated cell nuclei.

An example of an image and its bounding box labels can be seen in Figure 5.2.
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(a) Without annotations (b) With annotations

Figure 5.2: Example of TIGER image without and with annotations of TILs [15].

TNBC Triple Negative Breast Cancer Nuclei Segmentation dataset [16], is an

open dataset consisting of 11 patients with breast cancer, with varying numbers

of images for each patient, provided regions of interest (ROIs) in PNGs. To-

gether, it has 50 annotated ROIs of size 512×512, scanned with 40x magnification.

Specifically, we use the extended version of this dataset [78], where annotations of

cell classes were added. Each image has a corresponding pixel mask, where each

pixel is labeled by the class it represents. There are 11 different cell classes, plus

background and unknown classes. We also note that this extended version of the

dataset provides images of brain tissue, but since it is not part of our work, we

only work with the images of breast cancer. An example image with its ground

truth mask, already relabeled so only lymphocytes are annotated, can be seen in

Figure 5.3.
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(a) Image (b) Mask (c) Image with mask overlay

Figure 5.3: Example of TNBC image, mask, and overlay, where TILs are annotated
[78].

5.3 Deep Learning Model

5.3.1 Architecture

As a deep learning model for semantic segmentation, we employ the U-Net archi-

tecture. U-Net is a powerful architecture, and as we mentioned in Chapter 3, in

Section 3.5, it is also widely used in the medical imaging domain. Specifically, we

use the ResNet-34 encoder as the U-Net’s backbone, which is already pretrained

on the ImageNet dataset. This choice was based on the fact that residual blocks

further improve the U-Net’s ability to learn, as we continue to write in Section 3.5

of Chapter 3. In the state-of-the-art, which we present in Chapter 4, authors in

[75, 77] also use ResNet architectures, and specifically, ResNet-34 is used in [76].

The inspiration to initialize the encoder with weights pretrained on the ImageNet

dataset came from the state-of-the-art works as well, where a similar approach

was used in [75, 76, 77]. The full architecture of the model can be seen in Figure

5.4.
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Figure 5.4: The architecture of our model.

This model is being used in all our experiments as the segmentation model. The

training setup and model’s hyperparameters remain the same in every experiment

as well.

5.3.2 Input and Output Specifications

The input for the model is an image of size 128×128 pixels in a 3 - RGB - channel

space. The model’s segmentation head produces a binary mask of size 128×128

pixels and a depth of 1. The output mask is then run through the sigmoid function

to squeeze the values between 0 and 1. A threshold of 0.5 is applied to this mask

as pixels with a value less than 0.5 are predicted background and labeled with a

number 0, and pixels with a value greater than or equal to 0.5 are predicted TILs

and labeled with a number 1.
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5.3.3 Loss Function

The loss function used during training is the Dice Loss function. This loss function

is the preferred function to be used in the segmentation of objects and is also

frequently used in the medical imaging domain, as described in [39].

5.3.4 Optimization

We used the Adam optimizer, and the initial learning rate was set to 0.001, and

it was reduced every 5 epochs by a factor of 0.1. Early stopping was also used,

where the patience was set to 10 checks - if the validation loss was not improved

during the training and it got worse at least on 10 checks, the training stopped

to prevent overfitting. Checks were performed during every validation run, after

every epoch.

5.3.5 Training

Every training was set to run for 100 epochs, but it could be stopped earlier.

The batch size was set to 16 samples. Checkpoints of the model were periodically

saved every epoch, always the best checkpoint (in terms of validation loss). If the

CUDA framework is available, the training runs on the GPU; if not, then on the

CPU. During the training stage, we monitored the model’s performance on various

variables. These included accuracy, recall, precision, Dice coefficient, IoU, and the

running loss.

For training purposes, we further split the training data into the training subset

(80% of the whole training dataset) and the validation subset (20% of the whole

training dataset). Then, in each epoch, we let the model process the whole training

subset (in the form of batches) while monitoring and logging the aforementioned

variables. After each epoch, we set the model into validation mode. In this mode,
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the model does not update its parameters. We let it process the validation subset

and also monitor and log the variables, out of which the most interesting for us is

the validation loss, since this is used both for the early stopping and for saving the

checkpoints. After the validation was completed, we set the model into the training

mode again, where it could further update its parameters. This whole process was

repeated until the training was finished, and the model could be evaluated on the

testing dataset.

5.4 Evaluation Methods

Upon completing the training process, we initiated the final evaluation of the

segmentation model. The best-performing model, determined by the lowest val-

idation loss, was loaded from the saved checkpoint and set to evaluation mode

to prevent any parameter updates. Subsequently, the model processed the entire

testing dataset, and the final testing metrics were computed.

We assessed the model using both quantitative and qualitative methods. The quan-

titative evaluation included the Dice coefficient and IoU metrics - we describe these

in more detail and why they are most suitable for segmentation tasks in Chapter

3, in Section 3.4. For qualitative assessment, we visualized the predicted binary

masks alongside the ground truth masks to facilitate direct comparison.

5.5 Data Preprocessing

Since we work with two very distinct datasets, and furthermore, the TIGER

dataset is composed of three other datasets, we need to employ a robust pre-

processing framework to align all datasets on the same level. In Figure 5.5, we

can see how the images and masks from each dataset are preprocessed. Below, we

71



Chapter 5. Our Work

describe each preprocessing step for each image and mask set.

Figure 5.5: The preprocessing pipelines of both TIGER and TNBC datasets.

5.5.1 Normalization

TIGER and TNBC datasets pose several challenges to us. As we described in

section 5.2, data come from four distinct sources (three for TIGER and one for

TNBC) - this means that the staining is very different, which we can see in Figure

5.6.
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(a) TIGER image – JB (b) TIGER image – TC

(c) TIGER image – TCGA (d) TNBC image

Figure 5.6: Example images from TIGER datasets [15] and TNBC [78] before
normalization.

Firstly, we tried a randomly selected single image as a reference image for Macenko

normalization, which yielded suboptimal results when assessed visually. We have

considered other approaches to selecting a reference image, but as a recent study

[79] showed, when selecting only a single reference image for Macenko normaliza-

tion, the results will always be biased and suboptimal. Therefore, we employ the

multi-target Macenko stain normalization technique as described in [79], where

we select 8 reference images from the TIGER and 2 reference images from the

TNBC dataset. This number is not arbitrary; in [79], authors experimented with

a different number of reference images (2-20) and showed that the higher number

has slightly better results, but if the number is too high, there are no signifi-
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cant improvements. They also experimented with different ways of computing the

stain matrix, and the best results were achieved by the avg-post method, and this

method peaked when 10 reference images were selected [79]. Given the sizes of our

respective datasets, we decided to go with the 8 and 2 images and also with the

avg-post method. Then we used the same 10 reference images to normalize both

datasets. The normalization technique improved the color inconsistencies, as we

can see in Figure 5.7.

(a) TIGER image – JB (b) TIGER image – TC

(c) TIGER image – TCGA (d) TNBC image

Figure 5.7: Example images from TIGER datasets [15] and TNBC [78] after nor-
malization.
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5.5.2 Pseudo-mask Sources

The next step was to generate the pseudo-masks. For this, we created different

variations of the same image. We named the images that were created as a part of

one variation image source. In total, six different image sources were created for the

experiments. We used the original (raw) image as one source, then the normalized

image as another source. Furthermore, we extracted the hematoxylin image out

of the original image (Macenko normalization does this internally). This was done

based on the fact that hematoxylin highlights the cell nuclei, as we described

in Chapter 1. This hematoxylin image became our third image source. Lastly,

by applying histogram equalization to all of the aforementioned image sources (to

increase the overall contrast of the image and shift dark colors into darker ones and

light into lighter ones), we obtained another three image sources. The difference

in the image sources can be seen in Figure 5.8.
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(a) Original image (b) Normalized image (c) Hematoxylin image

(d) Original image with his-
togram equalization

(e) Normalized image with
histogram equalization

(f) Hematoxylin image with
histogram equalization

Figure 5.8: Examples of image sources.

We then operated on each image source with different computer vision techniques

to generate the final pseudo-mask PNGs. We describe each of these techniques in

Section 5.6.

5.5.3 Aligning the TNBC Dataset

To use the TNBC dataset, we needed to align its scale and the ground truth masks.

This dataset was scanned with the 40×magnification; however, the TIGER dataset

was scanned using the 20× magnification. To align them, we down-scaled the

TNBC dataset images and masks by a factor of 2. Moreover, the TNBC ground
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truth masks were relabeled to binary masks by setting all of the other labels except

for the lymphocyte cell labels as background.

5.5.4 Patching Strategy

To be able to feed our data to the deep learning UNet model, we created patches of

fixed size 128×128 pixels. The TIGER dataset contained images of varying sizes.

Therefore, we created overlapping patches with a dynamic stride in such a way

that no patch was shifted outside of the original image. We created 19,386 patches

of the TIGER dataset images. The TNBC dataset was nicer since the original

images were of 512×512 pixels in size, and after down-scaling by a factor of 2, they

became 256×256 pixels. Each image was then split into 4 non-overlapping patches.

This got us exactly 200 patches of TNBC dataset images. After this stage, the

data is ready for the training and evaluation process.

5.5.5 Images to Tensors

For the PyTorch framework to work with the PNG image patches, both original

images and masks, we needed to convert them from NumPy arrays into tensors.

This was done before the training and evaluation of each trained model.

5.6 Pseudo-masks Generation

To be able to start training the segmentation model on the TIGER dataset, we

needed to convert the bounding box annotations of lymphocyte nuclei into pixel-

level pseudo-masks. We used a series of computer vision methods, which were

chained in different ways to better identify the region where a cell nucleus is present

within the bounding box. This task was challenging because of the lower contrast

between the nuclei and the surrounding tissue, and also because some nuclei were
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too close to each other, meaning that there was an overlap between the bounding

boxes. This inspired us to create different versions of a single image, to promote

some properties of the image, such as increasing the contrast or isolating only the

hematoxylin staining. We called these versions image sources, and the process of

their creation is described in Subsection 5.5.2 as a part of image preprocessing.

The whole process of pseudo-mask generation can be seen in Figure 5.9. To better

understand the chain of operations applied, we will illustrate it on a single image

example of one image source:

1. Firstly, the image is loaded together with its corresponding bounding box

annotations.

2. Next, the individual labeled nuclei are cropped out of the image, using the

bounding box values.

3. Then a four combinations of operations are applied on the cropped region,

which means that from the single cropped region, four new versions of it

are created, based on which combination of operations was applied. It was

either:

• The Otsu thresholding

• The Adaptive thresholding

• The median blur with Otsu thresholding

• The median blur Adaptive thresholding

4. In the next step, the morphological opening is applied to remove small arti-

facts left after the thresholding.

5. The previous operations created so far a ’prototype’ of the pseudo-mask.

In the subsequent step, the marked watershed is applied, which uses this
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prototype together with the initial cropped image region to create a final

pseudo-mask.

6. Finally, the small pseudo-masks for individual cells are combined into a full-

image pseudo-mask

Figure 5.9: The process of pseudo-masks generation.

Given that we work with 6 image sources and 4 pipelines of computer vision

operations, where each pipeline is applied to every image source, this gives us in

total of 24 pseudo-masks for any given image. In the following paragraphs, we

describe each computer vision operation in more detail.

Median Blur We use the 3×3 median blur with the intuition that it could

remove small noises around the cell nuclei. This filter replaces each pixel with the

median of its neighborhood, which is determined by the size of the kernel. We use

the kernel of size 3×3 - this is reasonable for us, since the bounding boxes are of

size 12×12, 16×16, or 18×18 and we do want to remove possible small noise but

still preserve the shape of the nuclei.
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Otsu Thresholding The Otsu thresholding finds a threshold that minimizes

intra-class variance and then binarizes the pixel values based on this threshold.

Since this operation needs a grayscale image, we first do this conversion. Then we

apply the Otsu thresholding method and inversion - this automatically computes

the optimal Otsu threshold and also inverts the binarization so that dark nuclei

appear as white foreground and background pixels become black.

Adaptive Thresholding In contrast to Otsu thresholding, adaptive threshold-

ing computes the threshold for each pixel based on its neighborhood. We use the

11×11 adaptive thresholding with a constant of 2 - this ensures that we cover the

small nuclei diameter but still preserve fine details. In the Equation 5.1 we can

see how the threshold T (x, y) is computed for each pixel with coordinates x and

y. Firstly, a window W of size B×B is centered around the pixel. Then each

pixel’s grayscale intensity I(u, v) within this window with pixel coordinates u and

v is summed and then averaged. Finally, a constant is subtracted from this mean

to bias the threshold below the local mean. Again, we use it with inversion, as in

Otsu thresholding.

T (x, y) =
1

B2

x+B−1
2∑

u=x−B−1
2

y+B−1
2∑

v=y−B−1
2

I(u, v) − C (5.1)

Morphological Opening We use the elliptical 3×3 morphological opening to

remove any small artifacts left after the thresholding operations and to preserve

the shape of the nuclei.

Marked Watershed To obtain the final pseudo-mask, we employ the mark-

controlled watershed. This includes a series of steps:
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1. Firstly, the distance transform operation computes, for each foreground pixel

in the so-far-created binary mask, the Euclidean distance to the nearest

background pixel, producing a map whose peaks lie at object centers.

2. Secondly, we threshold the distance map, which keeps only the central 30%

of each cell nucleus - this helps to separate the touching nuclei and gives us

the pseudo-mask of sure foreground area (the sure nuclei area).

3. Then we dilate the sure foreground with a 3×3 elliptical kernel to expand

the region. Now we consider all pixels lying outside of these regions as sure

background.

4. After that, we subtract the sure foreground from the sure background mask.

This gives us the regions that should have the shape of a ring and are ’un-

known’ - either background or foreground. Those are the pixels that lie on

the boundaries of each cell.

5. Next, we do marker labeling - we mark each connected component of the

sure foreground mask with a different mark (integer), starting with number

1. Then we add number 1 to each pixel value. Lastly, we set those pixels

that are marked as an unknown region to zero. This step ensures that:

• The sure foreground areas start from number 2 onward,

• The sure background areas are marked with number 1, and

• The unknown regions are marked with number 0.

6. Finally, the watershed algorithm will flood and try to segment the unknown

regions (marked with 0). It treats the original image provided to it (the col-

orful crop of cell nuclei) as a height map, where the brighter pixels represent

high elevations and the darker pixels represent low elevations. It also uses
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the marker image to seed the foreground and background regions. During

the segmentation process, it floods the image starting at each marker label,

and when the floods meet, the lines separating the cell nuclei are created.

Pixels on these delineating lines have a value set to -1.

After the mark-controlled watershed produces the delineated nuclei mask, we set all

pixel values that are lower than or equal to 1 to 0 (sure background and delineation

lines) and those that are greater than 1 (all nuclei components) to 1 to create a

binary pseudo-mask.

Full-patch Combining After we obtain the small-sized pseudo-masks for each

cell nucleus bounding box, we reconstruct the full-patch mask by firstly creating

an image where all pixels have 0 values and then applying the binary OR operation

with the small-sized pseudo-masks on the position from which they were cropped.

By this, we get the final pseudo-mask for the original image, where pixels of nuclei

regions have values of 1 and background pixels have values of 0.

5.7 Pseudo-masks Fusion

During the generation of pseudo-masks, we obtained 24 different masks per single

image. We decided to fuse them based on the results of the experiment, which we

present in Subsection 5.8.2 and based on the visualization of the combined masks,

which we can see in Figure 5.10. These combined masks were created using the

pixel-wise addition of all 24 pseudo-masks, which gave us a single pseudo-mask per

image, where pixel values ranged between 0 (all pseudo-masks labeled the pixel as

background) and 24 (all masks labeled the pixel as foreground). For visualization,

a pixel-wise multiplication by 10 was applied to the resulting pseudo-masks to

better see the combined power of the pseudo-masks.
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Figure 5.10: Examples of combined pseudo-masks.

We decided to try two different fusion approaches:

1. Fuse the pseudo-masks via pixel-wise voting at quartile agreement levels -

100%, 75%, 50%, and 25% - keeping only those pixels declared foreground by

at least that percentage of the masks which achieved the highest Dice scores

in the experiment of Subsection 5.8.2. This gave us four sets of fused masks.

The overview of this fusing approach can be seen in Figure 5.11. Firstly, the

masks are summed together (pixel-wise) and then all pixels that are greater

than 0 are set to 1 (foreground - nuclei) to maintain the binary mask.

2. Fuse the pseudo-masks via pixel-wise voting consensus by all involved masks

- a pixel was labeled as foreground (cell nuclei) if either:

• 24 out of 24 masks declared the pixel as foreground,

• 23 out of 24 masks declared the pixel as foreground,

• 22 out of 24 masks declared the pixel as foreground, or

• 21 out of 24 masks declared the pixel as foreground.

This approach also gave us another four sets of fused masks. The whole

process can be seen in Figure 5.12. We always use all 24 pseudo-mask sets,

sum the pseudo-masks (pixel-wise), and then the threshold is used based on
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the voting strategy. If the pixel value is greater than or equal to the number

of masks that need to agree on it (either 24, 23, 22, or 21), it is set to 1

(foreground - nuclei); otherwise, it is set to 0 (background).

Together, we obtained 8 sets of fused masks.

Figure 5.11: The process of pseudo-masks fusion using quartile agreement levels.

Figure 5.12: The process of pseudo-masks fusing using voting consensus.
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5.8 Experiments

Our proposed system evolved with each performed experiment, since each experi-

ment built on the previous one. We will describe each experiment in this section,

with a focus on the data used for training and testing, the experiment setup and

workflow, and the results of the experiment. Every experiment was run three times

to reduce the risk that random initialization of the model’s parameters, or the split

of training data into training and validation subsets, would significantly improve

or significantly worsen the final results.

For the first experiment, we utilized just the U-Net model itself as a deep learning

module. The fully annotated TNBC dataset was used for this task.

The second experiment used the pseudo-masks generated by a combination of

image sources and different computer vision techniques. The pseudo-masks were

generated for the weakly annotated TIGER dataset from the provided bounding

box annotations. These were then used as ground truth masks for subsequent

training of the U-Net model, which was trained on the TIGER dataset. For the

final evaluation, the TNBC dataset was used.

The third experiment builds on the second. It compared the different fusing strate-

gies of mask sets. Again, we used these fused masks to train the U-Net model on

the TIGER dataset, and the TNBC dataset was used for the final evaluation.

In the fourth experiment, we utilized a transfer learning strategy, where we took

the best model trained during the third experiment and fine-tuned it using part

of the fully annotated TNBC dataset.
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5.8.1 Experiment 1 - Training on TNBC Dataset

In the first experiment, we wanted to check whether the small, fully annotated

TNBC dataset would be sufficient for training the segmentation model.

Data We use only the fully annotated TNBC dataset, both for the training and

for the final evaluation. This dataset is split into three folds, where the folds

contain the following number of image patches:

• Fold 1 contains 72 image patches, from 4 patients,

• Fold 2 contains 68 image patches, from 4 patients, and

• Fold 3 contains 60 image patches, from 3 patients

Always, two folds were used as the training set, and one fold was used as the

testing set. Together, this gave us three rounds of training and evaluation for

one experiment run. To calculate the final result for each reported metric, the

weighted average of the metrics logged by every round was calculated, given the

Equation 5.2, where M̄ is the final reported metric (Dice coefficient and IoU),

n is the number of the fold that was used for evaluation, i is the i -th fold used

for model evaluation, Mi is the evaluation metric calculated when evaluating the

model on the i -th fold, and Wi is the size of the i -th fold.

M̄ =

∑n
i=1Mi ·Wi∑n

i=1Wi

(5.2)

The run of this experiment is simple. We train the U-Net model using the TNBC

dataset, with the provided ground truth masks, and evaluate it on the same

dataset.
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Results The experiment ran on average around 35 epochs due to early stopping.

From the training and validation loss in Figure 5.13, we can observe that the model

was not able to learn when trained only on the small, although fully annotated,

dataset. This can be seen both in the graph spikes on the training loss as well as

on the validation loss, which was not able to improve significantly after the first 10

epochs. We see this also on the evaluation metrics, which are summarized in Table

5.1, where the Dice coefficient was 18.91% and the IoU was 10.64%. In the Figure

5.14, we can see that the model was not able to differentiate between different

cell nuclei types, nor was it able to distinguish the cell nuclei and the background

area.

Table 5.1: Results of the model trained on the TNBC dataset.

Metric Value (%)
Dice coefficient 18.91
IoU 10.64

Figure 5.13: The loss function during training (green) and validation (orange) of
the model trained on the TNBC dataset.
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(a) Image 1 prediction (b) Image 2 prediction (c) Image 3 prediction

(d) Image 1 ground truth (e) Image 2 ground truth (f) Image 3 ground truth

Figure 5.14: Visual evaluation of model trained on the TNBC dataset. Predicted
lymphocytes (cyan) and ground truth lymphocytes (green).

5.8.2 Experiment 2 - Pseudo-mask Generating Strategies

In the second experiment, we used the 24 different pseudo-masks to train 24 differ-

ent models. We wanted to compare the different models based on the pseudo-mask

sets they were trained on.

Data As training data, we used the TIGER image patches. Together, 19,386

image patches were used in the training set. Pseudo-mask sets were used as ground

truth labels for the training of the segmentation model. We explain the generation

of these sets in detail in Section 5.6. Since these image patches come with weak
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annotations, we needed to evaluate the model on the TNBC dataset. For the

evaluation, we used all 200 patches present in the TNBC datasets. The Dice

coefficient and IoU were used as the evaluation metrics.

Results We summarized all results from this experiment in the Table 5.2. We

can see that when compared to the first experiment, where we trained the same

model only on the small fully annotated TNBC dataset, both the Dice coefficient

and IoU improved significantly. We can also see in Figure 5.15 that the model was

able to learn better and converge faster (14 epochs on average - more than 2 times

faster than the model trained solely on the TNBC dataset)

From the results, we can see that the highest Dice coefficient (52.57%) and IoU

(36.01%) were achieved by the model that was trained on the mask set, which was

created from the histogram-equalized hematoxylin image source, where the blur

was not applied and where the Otsu thresholding was used.

Next, we noticed that the histogram equalization (HE) boosts the model’s per-

formance. It consistently improved segmentation metrics across all image sources,

except the ones that were using the normalized image. For example, a histogram-

equalized and normalized image source with blur and adaptive thresholding reached

51.09% Dice and 34.83% IoU - over 11.5% improvement in Dice coefficient and over

8% improvement in IoU over the same non-equalized normalized pipeline (39.57%

Dice, 26.78% IoU).

We also observed that pseudo-mask sets that used median blur were greatly out-

performed by the ones that did not use it. This might be because the blur reduces

noise on one hand, but on the other hand, it could distort cell boundaries and

’blend’ the cell nuclei with its surroundings.

Overall, there was no universally dominant strategy - when deciding whether to
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use only one image source, or only blur/no-blur, or a single thresholding technique,

we always observed that a different strategy could overrule it. This could also be

demonstrated by the following examples:

• On raw images, the best result is with no blur + Otsu thresholding (49.94%

Dice), but on normalized HE images, the best is no blur + adaptive thresh-

olding (51.09% Dice), and on hematoxylin HE, the top is no blur + Otsu

thresholding (52.57% Dice).

• In the raw setting, disabling blur (49.94% Dice) beats enabling it (46.92%

Dice) for Otsu thresholding, but in the hematoxylin case, enabling blur

(50.39%) actually outperforms no-blur for Otsu thresholding when equal-

ization is applied.

• For raw HE images with blur applied, adaptive thresholding (47.50% Dice)

beats Otsu thresholding (44.86% Dice), whereas for normalized images with

blur applied, Otsu thresholding (49.45% Dice) outperforms adaptive thresh-

olding (39.57% Dice) without equalization.

These observations inspired us to design another generation of sets of pseudo-

masks, where we fuse the original 24 masks into one - we explain the process

of pseudo-masks fusion in Section 5.7 and the experiment itself in Subsection

5.8.3.

On the qualitative side, we can see in Figure 5.16 that the best model, trained on

the hematoxylin image with HE, without blur and with Otsu thresholding, was

able to segment cell nuclei much better than the model trained only on the small

TNBC dataset. The issue here is that, although it can successfully determine

whether a pixel belongs to nuclei or tissue, it cannot determine very well if the

pixel should belong to the lymphocyte nuclei or some other cell type.
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Table 5.2: Dice and IoU percentages for the models trained on different pseudo-
mask generation strategies.

Image Source1 Blurred Threshold Type Dice (%) IoU (%)
raw yes adaptive 44.18 29.28
raw no adaptive 46.53 31.45
raw yes otsu 46.92 31.60
raw no otsu 49.94 33.77
raw HE yes otsu 44.86 29.42
raw HE no otsu 47.28 31.91
raw HE yes adaptive 47.50 31.98
raw HE no adaptive 49.30 33.33
normalized yes adaptive 39.57 26.78
normalized no otsu 46.33 31.24
normalized no adaptive 48.30 32.48
normalized yes otsu 49.45 33.35
normalized HE no otsu 38.30 25.96
normalized HE no adaptive 47.70 32.05
normalized HE yes otsu 48.66 32.66
normalized HE yes adaptive 51.09 34.83
hematoxylin no otsu 41.61 27.46
hematoxylin no adaptive 45.18 29.77
hematoxylin yes adaptive 47.94 32.16
hematoxylin yes otsu 49.19 33.10
hematoxylin HE yes adaptive 48.06 32.20
hematoxylin HE yes otsu 50.39 34.22
hematoxylin HE no adaptive 52.35 35.97
hematoxylin HE no otsu 52.57 36.01

1HE: histogram-equalized
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Figure 5.15: The loss function during training (green) and validation (orange) of
the best model trained with the hematoxylin histogram-equalized pseudo-mask,
created without blur applied and with Otsu thresholding.
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(a) Image 1 prediction (b) Image 2 prediction (c) Image 3 prediction

(d) Image 1 ground truth (e) Image 2 ground truth (f) Image 3 ground truth

Figure 5.16: Visual evaluation of the best model trained with the hematoxylin HE
pseudo-mask, created without blur applied and with Otsu thresholding. Predicted
lymphocytes (cyan) and ground truth lymphocytes (green).

5.8.3 Experiment 3 - Pseudo-mask Fusing Strategies

The third experiment expanded further on the idea that different pseudo-mask sets

can sometimes better capture the nuclei under varying conditions, as we saw in

experiment 2 in Subsection 5.8.2. For this purpose, we try to combine the power

of different pseudo-mask sets to create one pseudo-mask that will be used for the

training. In this experiment, we want to compare different fusing strategies for the

resulting pseudo-mask.
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Data Similarly to Experiment 2, we work with the TIGER dataset as the training

set for the model, and evaluate it on the TNBC dataset. The major change is the

usage of fused masks. We present the different fusing strategies in Section 5.7.

Together, there are 8 fused pseudo-mask sets, created with both best quartile

agreement levels and voting consensus. The rest of the experiment setting is the

same as it was in Experiment 2.

Results From the results summary presented in Table 5.3, we can clearly state

that the consensus method - where either 24 out of 24, 23 out of 24, 22 out of

24, or 21 out of 24 masks voted for a pixel in a fused pseudo-mask - heavily

outperformed the quartile agreement strategy, where the best 100%, 75%, 50%, or

25% of the pseudo-masks voted for a pixel (if at least one mask voted for the pixel,

the pixel was set as foreground - nuclei). The order of the best pseudo-masks was

determined by the previous experiment, which we describe in Subsection 5.8.2,

specifically the Dice coefficient values.

The best model trained on the consensus strategy achieved a Dice coefficient of

53.53%, while the best model trained on the quartile strategy achieved a Dice of

42.93%, by 10.6% worse than the best consensus strategy model.

We also compare these two best models in terms of train and validation loss, which

we can see in the Figure 5.17. There, we see that the consensus model was able

to learn better during training as well. The quartile model was not able to learn

that good, and the training even stopped earlier.

Finally, we compare these two models visually, in the Figure 5.18. From the figure,

it is clear that the quartile model also captures cell nuclei surroundings, and is more

prone to mark non-lymphocyte nuclei as lymphocyte nuclei. The consensus model

is much better at segmenting only the cell nuclei, however, the same issue as in
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experiment 2 prevails - the model can identify cell nuclei, but it is harder for it to

tell if it is a lymphocyte or non-lymphocyte nucleus.

When we compare the best model from this experiment - the consensus model

(53.53% Dice) with the best model from experiment 2 - the model trained on the

HE hematoxylin image, without blur and Otsu thresholding (52.57%), we see that

by fusing the masks and selecting the correct fusion strategy, we were able to

improve the model’s performance by 0.96%.

Table 5.3: Dice and IoU percentages for the models trained on different pseudo-
mask fusion strategies.

Masks Set Type Mask Set Dice (%) IoU (%)
consensus leave 0 out 50.88 34.96
consensus leave 1 out 53.53 37.42
consensus leave 2 out 52.31 36.35
consensus leave 3 out 52.58 36.33
quartile top 100% 41.11 26.40
quartile top 75% 40.35 25.72
quartile top 50% 42.93 27.89
quartile top 25% 42.59 27.61

95



Chapter 5. Our Work

Figure 5.17: The loss function during training (green dashed) and validation (or-
ange dashed) of the best model trained with the quartile strategy of fusing pseudo-
masks, and the loss function during training (green solid) and validation (orange
solid) of the best model trained with the consensus strategy of fusing pseudo-masks.
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(a) Image 1 prediction - Top
50%

(b) Image 2 prediction - Top
50%

(c) Image 3 prediction - Top
50%

(d) Image 1 prediction -
Leave 1 out

(e) Image 2 prediction -
Leave 1 out

(f) Image 3 prediction -
Leave 1 out

(g) Image 1 ground truth (h) Image 2 ground truth (i) Image 3 ground truth

Figure 5.18: Visual comparison of the best models trained with the quartile (top
row) and consensus strategies (middle row), and ground truth (bottom row). Pre-
dicted lymphocytes (cyan) and ground truth lymphocytes (green).
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5.8.4 Experiment 4 - Transfer Learning

In the last experiment, we wanted to build on the results of experiment 3. We

decided to take the best model from that experiment and fine-tune it using a

portion of data from the fully annotated TNBC dataset. We also experimented

with the encoder freezing during the training to see if we could further improve

the model’s performance.

Data We use the model pretrained on the TIGER dataset. For the fine-tuning,

we use the TNBC dataset, with the exact same 3-fold split as we used in experiment

1, which we describe in Subsection 5.8.1. We always used 2 folds for fine-tuning and

1 fold for evaluation of the model. The final evaluation metrics were computed as

a weighted average of the metrics reported in each fold evaluation. We fine-tuned

the model under two conditions. We tried fine-tuning it with a frozen encoder,

which means that the weights of the encoder were not updated during the training,

only the weights of the decoder. In the second approach, we trained the whole

model, both the encoder and the decoder.

Results In the Table 5.4, we have summarized the final evaluation metrics of this

experiment. We can see that when compared to the best model from experiment

3 (53.53% Dice) - the consensus model, where 23 out of 24 masks voted for a pixel

- both the model with unfrozen encoder (55.01% Dice) and the one with frozen

encoder (57.59% Dice) were able to slightly improve. Overall, the best model was

the model with frozen encoder during the fine-tuning - it achieved a Dice coefficient

of 57.59% and IoU of 41.25%.

On the graph showing the training and validation loss of the model with frozen

encoder in Figure 5.19 we can see that the fine-tuning enabled the model to learn

slightly more, but also that the training was very short (13 epochs) since the model

98



Chapter 5. Our Work

could not improve further on the validation loss.

Finally, in Figure 5.20 we observe a similar behavior to the best models from

experiments 2 and 3 - that the model can recognize the cell nuclei pixels, but has

a problem of differentiating between the pixels that belong to lymphocyte nuclei

and non-lymphocyte nuclei.

Table 5.4: Dice and IoU percentages for the models fine-tuned on the TNBC
dataset.

Encoder status Dice (%) IoU (%)
Unfrozen 55.01 38.6
Frozen 57.59 41.25

Figure 5.19: The loss function during training (green) and validation (orange) of
the model fine-tuned with the frozen encoder.
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(a) Image 1 prediction (b) Image 2 prediction (c) Image 3 prediction

(d) Image 1 ground truth (e) Image 2 ground truth (f) Image 3 ground truth

Figure 5.20: Visual evaluation of the model fine-tuned with the frozen encoder.
Predicted lymphocytes (cyan) and ground truth lymphocytes (green).

5.8.5 Experiments Summary

To summarize the experiments, we decided to put the evaluation metrics of the

best model from each experiment into a single Table 5.5. There, we can see that in

each subsequent experiment, we were able to improve the overall performance of

the corresponding model. The best model overall is the one trained on the TIGER

dataset and the consensus fusion strategy, where 23 out of 24 masks voted for

a pixel to be foreground (lymphocyte nuclei) and then fine-tuned on the TNBC

dataset, with the encoder frozen during the training.
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Table 5.5: Comparison of best Dice and IoU across experiments.

Experiment Best Dice (%) Best IoU (%)
1 – Training with full annotations 18.91 10.64
2 – Mask generating strategies 52.57 36.01
3 – Mask fusing strategies 53.53 37.42
4 – Transfer Learning 57.59 41.45

5.9 Tools

The whole project was written in the Python programming language version 3.12

[80]. We used Python libraries such as NumPy [81] for efficient numerical op-

erations, and Matplotlib [82] for the image, masks, and overlay visualizations.

Furthermore, we utilized the power of Jupyter Notebooks [83] to be able to run

parts of code and easily explore the data during the preprocessing and pseudo-

mask creation stages, and also to be able to upload data and submit training on

the remote clusters.

For the image manipulation, transformation, and other computer vision opera-

tions during the preprocessing, pseudo-masks generation, and pseudo-masks fu-

sion stages, we relied on the OpenCV Python library [84]. For the multi-target

Macenko stain normalization, we used the existing implementation from [85]. The

whole preprocessing and pseudo-masks creation process was executed locally on a

MacBook Air with an M1 Silicon chip, with 16 GB of RAM.

Libraries and frameworks such as scikit-learn [86], PyTorch [87], PyTorch Light-

ning [88], and Segmentation Models PyTorch [89] were used for implementation of

the classical machine learning baselines as well as for building the deep learning

segmentation model to reduce the boilerplate code and make use of trusted and

validated approaches implemented in those modules.

101



Chapter 5. Our Work

For the development and debugging, we used the PyCharm [90] integrated devel-

opment environment. We also used Git [91] for version management and GitHub

[92] for remote control of our project.

The training of all models was done remotely in the cloud environment, since this

was the fastest and most feasible option. We utilized the Azure Machine Learning

Studio [93] for this purpose. As a compute device, we used the virtual machine,

which provides 24 CPU cores, 448 GB of RAM, a 2.9 TB disk, and 4 NVIDIA

Tesla V100 GPUs. The computationally expensive tasks used CUDA [94] for GPU

acceleration, so that the training could be completed in a shorter amount of time

compared to the CPU. For easier monitoring, logging, data visualization, and

the overall improved management of the whole training process and evaluation

process, we used the Weights and Biases [95], where we could save, compare, and

plot different trainings and runs.
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Conclusion

The goal of this work was to develop a hybrid approach that would be able to

deal with common challenges in the automated semantic segmentation of medical

images. These were, namely, a low volume of fully annotated data and a large

volume of data that is only weakly annotated. The task was to segment the

lymphocyte nuclei. This was also a great challenge, since many state-of-the-art

works work with weak annotations in the form of bounding boxes, but their goal

is to perform the nuclei segmentation, no matter the cell nuclei class, while in our

work, we try to segment a specific class of nuclei - the lymphocyte nuclei. To

our best knowledge at the time of writing, there is little to no available research

papers on the exact specific setting we have. Two publicly available datasets were

used for this task: the TIGER dataset [15] with bounding box annotations of

lymphocyte nuclei, and the TNBC [78] dataset, which provided full pixel-level

mask annotations of lymphocyte nuclei.

We selected the deep learning model based on the state-of-the-art work and em-

ployed known methods of traditional computer vision, such as Otsu and adaptive

thresholding, and mark-controlled watershed, to prepare different sets of pseudo-
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masks out of bounding box annotations. We then built further on the idea that

each set could perform better on different images, so we developed different pseudo-

mask fusion strategies.

In the experiments, we proved that training the model only on a very small TNBC

dataset, although fully annotated, is insufficient. The same model, when trained

on the larger TIGER dataset, even though with pseudo-masks used during the

training, achieved superior results compared to the model trained solely on the

TNBC dataset, both in terms of Dice coefficient and IoU. The model that used

the best fused pseudo-mask showed improvements on both evaluation metrics as

well. The final model that was pretrained on the TIGER dataset with pseudo-

masks and then fine-tuned on the TNBC dataset was able to achieve the best

results in Dice coefficient and IoU.

Possible future improvements may include a fully automated pipeline with an

iterative self-training loop, where in the first iteration we train the model using

pseudo-masks generated via the traditional computer vision pipeline, then let it

predict the masks on the same dataset it was trained on, effectively creating a

second generation of pseudo-labels. Then it would be retrained using the first

generation of predictions, and so on, with iterative improvements of the pseudo-

masks.
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7.1 Úvod

V posledných rokoch ukazujú algoritmy počítačového videnia a hlbokých neuróno-

vých sietí výborné výsledky v mnohých oblastiach spracovania obrazu, napríklad

detekcie, segmentácie, či klasifikácie. To má výrazný dopad na mnohé oblasti a

jednou z nich je aj medicína. V medicíne sa používajú rôzne metódy, ktoré pomá-

hajú pri diagnostike. Jednou z takýchto metód je aj histológia, kedy je odobraný

kúsok tkaniva, ktorý je následne ďalej spracovaný. Vzorky sa často zafarbujú,

pre zvýšenie kontrastu medzi rôznymi štruktúrami, ako sú jadrá buniek a tkanivá.

Jedným z najpoužívanejších zafarbovacích protokolov je zafarbovanie pomocou he-

maoxylínu a eozínu, kde hematoxylín zafarbuje jadrá buniek do odtieňov fialovej

a eozín zafarbuje okolité tkanivo do odtieňov ružovej. Takto ofarbené vzorky sa

potom ďalej analyzujú.

V našej práci sa zameriavame na automatizovanú segmentáciu lymfocytov z ná-

dorového tkaniva prsníkov, ktoré je ofarbené hematoxylínom a eozínom. Tieto

lymfocyty môžu totiž slúžiť ako potenciálne biomarkery pri prognóze nádorového
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ochorenia, akým je aj rakovina prsníkov. V bežnej praxi, musí kvalifikovaný pa-

tológ manuálne počítať a odhadovať množstvo a priestorové usporiadanie týchto

lymfocytov, čo je časovo náročné a náchylné na chyby a nepresnosti. Algoritmy

umelej inteligencie a hlbokých neurónových sietí ukázali v posledných rokoch vy-

soký potenciál pri spracovaní medicínskych obrazových dát. Tieto algoritmy však

vyžadujú veľké množstvo presne anotovaných dát, pričom príprava týchto presných

anotácií opäť spočíva na medicínskych expertoch. Preto v našej práci navrhujeme

riešenie, ktoré využíva dva verejné zdroje dát:

• veľký dataset TIGER, ktorý je slabo anotovaný a poskytuje anotácie jadier

lymfocytov v tvare ohraničujúcich rámčekov.

• malý dataset TNBC, ktorý je úplne anototvaný a poskytuje presné anotácie

jadier lymfocytov na pixelovej úrovni.

Keďže anotácie datasetu TIGER sú vo forme ohraničujúcich rámčekov, cieľ tejto

práce má dve časti:

1. Vyvinúť, implementovať a porovnať rôzne stratégie vytvárania pseudo-masiek

pre dataset TIGER, za použitia metód počítačového videnia.

2. Natrénovanie segmentačného modelu hlbokého učenia, pričom pri tréningu

budú použité pseudo-masky pripravené rôznymi spôsobmi a tento model

bude vyhodnotený metrikami ako sú Dice koeficient a IoU.

7.2 Analýza problému

7.2.1 Počítačové videnie

Videnie je jedným z našich primárnych zmyslov, a preto je pochopiteľné, že hľa-

dáme a vyvíjame rôzne metódy na zachytenie, uskladnenie a spracovanie obrazu.
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Počítačové videnie, ako podmnožina počítačovej vedy, sa zameriava na využitie

počítačov pre extrakciu zmysluplných informácií z obrazových dát, čím sa snaží

napodobniť schopnosti ľudského mozgu. Medzi hlavné úlohy patrí napríklad kla-

sifikácia, detekcia a segmentácia objektov na obrazových dátach. Tieto úlohy

vieme riešiť buď tzv. tradičnými metódami počítačového videnia, s vopred za-

definovaný postupom, alebo algoritmami strojového učenia a umelej inteligencie.

Medzi tradičné metódy segmetácie obrazu vieme zaradiť napríklad Otsu funkciu

prahovania (ang. thresholding), adaptívnu funkciu prahovania, alebo watershed

algoritmus.

Strojové učenie a umelá inteligencia tiež tvoria súčasť počítačového videnia. Pri

klasickom programovaní sú to ľudia, kto tvorí počítačový program, zatiaľ čo pri

strojovom učení necháme stroj, aby vytvoril optimálny program, pokiaľ sú mu

známe vstupy a výstupy. Stroj sa učí toto mapovanie medzi vstupmi a výstupmi

analýzou príznakov a vzorov vo vstupe. Hlboké učenie a špeciálne konvolučné

neurónové siete sú známe veľmi dobrou schopnosťou identifikácie týchto vzorov aj

v obrazových dátach.

Kvalita vstupných dát pre tieto algoritmy je veľmi dôležitá. Preto sa využívajú

rôzne techniky predspracovania dát, ako prvý krok prípravy dát. V doméne digi-

tálnych histologických snímkov sa často používa farebná normalizácia, ktorá má

zmierniť výkyvy v ofarbení snímok hematoxylínom a eozínom. Medzi najpoužíva-

nejšie normalizačné techniky patrí napríklad tzv. Macenko normalizácia.

7.2.2 Hlboké neurónové siete

Umelé neurónové siete sú inšpirované biologickými neurónmi, kedy jeden neurón

prijíma vstupy zo svojho okolia a následne sa buď "aktivuje", teda vyšle signál

pre ďalšie neuróny, alebo ostáva neaktívny. Základnou stavebnou jednotkou ne-
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urónových sietí je teda neurón. Jedná sa o funkciu, ktorá má vstupy, a každý

vstup násobí jeho prislúchajúcou váhou. Takto vynásobené vstupy sú sčítané a

pripočíta sa k nim ešte prahová hodnota. Takáto funkcia je stále lineárna, preto,

aby sme boli schopný riešiť aj nelineárne problémy, prechádza výsledná hodnota

do tzv. aktivačnej funkcie, ktorá je nelineárna. Medzi príklady aktivačných fun-

kcií patrí napríklad funkcia sigmoid, tanh, alebo ReLU. Neróny vedia byť následne

usporiadané do vrstiev, kde neuróny z jednej vrstvy prijímajú vstupy od neurónov

z prechádzajúcej vrstvy a posielajú výstupy z aktivačných funkcií ako vstup pre

neuróny z nasledujúcej vrstvy. Týmto spôsobom vzniká neurónová sieť. Výstup

neurónov na poslednej vrstve je predikcia siete. Táto predikcia sa potom porov-

náva so skutočnou hodnotou výstupu a vyrátava sa tzv. chybová funkcia. Chyba

siete je následne spätne propagovaná cez všetky vrstvy a neuróny, ktoré si ná-

sledne upravujú svoje parametre (váhy a prahy) tak, aby minimalizovali chybovú

funkciu. Poznáme rôzne chybové funkcie, napríklad MSE chybová funkcia alebo

Dice chybová funkcia.

V priebehu rokov vznikli rôzne architektúry neurónových sietí. Medzi najznámejšie

patria konvolučné neurónové siete, ktoré sú schopné zachytiť komplexné vzory v

dátach s narastajúcou hĺbkou siete. Konvolučné siete využívajú konvolučné bloky

spolu s ReLU aktivačnou funkciou na extrakciu relevantných čŕt z obrázku.

Jednou z architektúr konvolučných neurónových sietí je aj U-Net architektúra,

ktorá dosahuje výborné výsledky pri segmentácii objektov z obrazových dát. Pri

segmentácii chceme vytvoriť pixelovú masku, kde budú vyznačené pixely, na kto-

rých sa nachádza hľadaný objekt. Obmedzením klasických konvolučných architek-

túr je neschopnosť zachovať priestorové informácie po počiatočných vrstvách na

extrakciu príznakov. Tento problém rieši nový typ architektúry – enkóder-dekóder

architektúra. Enkóder extrahuje najviac opisné črty obrázka a komprimuje ich,
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pričom znižuje redundanciu informácii a dekóder sa následne snaží z tejto zakódo-

vanej reprezentácie obrázka naspäť poskladať pôvodný obrázok. Stratová funkcia

pritom počíta rozdiel medzi pôvodným obrázkom a obrázkom vytvoreným dekóde-

rom. Ak je dekodér schopný vytvoriť obraz veľmi podobný pôvodnému, znamená

to, že skrytá reprezentácia obrazu, ktorú enkóder extrahoval, je dostatočne kva-

litná. Následne je dekóder možné odstrániť a namiesto neho pripojiť modul pre

klasifikáciu, segmentáciu alebo lokalizáciu, ktorý využije príznaky naučené enkó-

derom. V segmentačných úlohách sa do časti dekódera zavádza jednoduchá modi-

fikácia. Namiesto generovania pôvodného obrazu sa dekóder trénuje na vytváranie

segmentačnej masky, kde každý pixel nesie pravdepodobnosť príslušnosti k určitej

triede. Táto vypočítaná maska pravdepodobnostnej distribúcie sa následne použije

spolu s originálnou maskou v stratovej funkcii na výpočet ich rozdielu a usmer-

nenie tréningu. U-Net architektúra tiež pozostáva z enkódera a dekódera, pričom

ešte pridáva koncept tzv. preskočených spojení, kedy posledný výstup z každej

vrstvy enkódera je zreťazený s prvým vstupom do každej vrstvy dekódera, ako

kompenzáciu za možnú stratu čŕt, ktorá mohla nastať pri zmenšovaní aktivačnej

mapy obrázka.

Medzi ďalšie varianty modelu U-Net patrí napríklad 3D U-Net, sieť, ktorá je po-

dobná U-Net architektúre ale upravená pre prácu s 3D dátami, alebo Attention

U-Net, ktorý využíva bránu pozornosti na upriamenie pozornosti siete na najdô-

ležitejšie časti obrázka.

Ďalším typom architektúry sú tzv. Vision Transformery, ktoré využívajú mnoho

blokov pozornosti na zachytenie globálneho kontextu z obrázku.
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7.3 Naša práca

Táto práca predstavuje metódu, ktorá sa zaoberá výzvami, keď máme plne anoto-

vaný súbor údajov, avšak veľmi malej veľkosti (dataset TNBC), a veľký dataset,

ale slabo anotovaný (dataset TIGER). Naším cieľom je prekonať tieto výzvy imple-

mentáciou hybridného prístupu na sémantickú segmentáciu lymfocytov. Hybridný

prístup sa skladá z predspracovania, ktoré pripravuje údaje na trénovanie a vy-

hodnotenie a zo samotného vytvárania pseudo-masiek. Výsledné výrezy obrázkov

sa potom použijú na trénovanie segmentačného modelu hlbokého učenia - archi-

tektúry U-Net, s ResNet-34 enkóderom, ktorá bola predntrénovaná na ImageNet

datasete. Hyperparametre modela sú nasledovné:

• Dice stratová funkcia

• Adam optimizér

• Počiatočná rýchlosť učenia 0.001, znížená faktorom 0.1 každých 5 epoch

• Tréning je nastavený na 100 epoch s predčasným zastavením, ak sa validačná

chyba zhorší počas 10 kontrol, kontrola sa vykonáva po každej epoche

Najskôr sa pokúsime natrénovať a vyhodnotiť model na samotnom malom da-

tasete. Potom použijeme techniky predspracovania a počítačového videnia na

generovanie rôznych súborov pseudo-masiek z anotácií vo forme ohraničujúcich

rámčekov pre slabo anotovaný dataset a natrénujeme na ňom model, ktorý opäť

vyhodnotíme na malom, plne anotovanom datasete. Následne sa pokúsime iden-

tifikovať a vybrať najlepšiu stratégiu zlučovania súborov masiek, aby sme využili

rôzne schopnosti súborov zachytiť oblasť bunkových jadier. Nakoniec vyberieme

najlepší model (s najúspešnejšou stratégiou zlučovania masiek) a dotrénujeme ho

pomocou časti údajov z plne anotovaného datasetu. Každý z týchto experimentov

vyhodnotíme pomocou metrík ako Dice koeficient a IoU.
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7.3.1 Datasety

Pracujeme s dvoma datasetmi. Prvým datasetom je TIGER dataset, ktorý obsa-

huje 1879 PNG obrázkov tkaniva rakoviny prsníkov, pod 20x zblížením, zafarbe-

ných hematoxylínom a eozínom. Obrázky sú rôznej veľkosti a pochádzajú z troch

rôznych inštitútov. Dataset je anotovaný slabo, anotácie sú vo forme ohraničujú-

cich rámčekov.

Druhým datasetom je dataset TNBC. Obsahuje 50 PNG obrázkov (od 11 pacien-

tov) tkaniva rakoviny prsníkov, pod 40x zblížením, zafarbených hematoxylínom a

eozínom. Všetky obrázky sú veľké 512×512 pixelov a sú k nim poskytnuté ano-

tácie vo forme pixelových masiek, kde sú anotované rôzne triedy buniek, spolu 11

tried.

7.3.2 Predspracovanie

Keďže obrazové dáta pochádzajú z rôznych zdrojov, využívame multi-cieľovú Ma-

cenko normalizáciu, pričom používame 8 obrázkov z datasetu TIGER a 2 obrázky z

datasetu TNBC. Následne normalizujeme obrázky v oboch datasetoch. Obrázky v

TNBC datasete ešte preškálujeme faktorom 0.5, aby sme zmenili zblíženie z 40x na

20x. Následne vytvoríme z obrázkov z oboch datasetov výrezy o veľkosti 128×128.

Pokiaľ sú obrázky z TIGER datasetu príliš malé, nepoužijeme ich. Spolu nám

takto vznike 19 386 výrezov z TIGER datasetu a 200 výrezov z TNBC datasetu.

Na maskách z TNBC zmeníme označenie pre triedy iné ako lymfocyty na pozadie

a vytvoríme takto binárnu masku. Následne aj tieto masky preškálujeme faktorom

0.5 a vytvoríme z nich výrezy.

Počas predspracovania vytvoríme aj 6 rôznych verzii obrázka, z obrázkov v TIGER

datasete, konkrétne:
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• Pôvodný obrázok

• Pôvodný obrázok s vyrovnaním histogramu (ang. histogram equalization)

• Normalizovaný obrázok

• Normalizovaný obrázok s vyrovnaním histogramu

• Hematoxylínový obrázok

• Hematoxylínový obrázok s vyrovnaním histogramu

Tieto verzie potom použijeme pri vytváraní pseudo-masiek.

7.3.3 Tvorba pseudo-masiek

Pre vytváranie pseudo-masiek používame sekvenciu metód počítačového videnia.

Spolu používame 4 rôzne sekvencie, pričom každá je aplikovaná na každú verziu

obrázka spomínanú vyššie. Týmto spôsobom dostaneme 24 rôznych pseudo-masiek

pre jeden pôvodný obrázok. Tento proces vytvárania pseudo-masky prebieha na-

sledovne:

1. Obrázok je načítaný spolu s jeho anotáciami vo forme ohraničujúcich rám-

čekov.

2. Následne sa z obrázka vyrežú jednotlivé lymfocyty podľa ohraničujúcich rám-

čekov.

3. Ďalej sa aplikujú 4 rôzne sekvencie metód počítačového videnia, teda z jed-

ného pôvodného výrezu vzniknú 4 ďalšie. Tieto sekvencie sa líšia podľa

aplikovaných funkcií:

• Otsu funkcia prahovania (ang. thresholding)

• Adaptívna funkcia prahovania
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• Otsu funkcia prahovania spolu s rozmazaním obrázka

• Adaptívna funkcia prahovania spolu s rozmazaním obrázka

4. V ďalšom kroku sa použije morfologické otváranie, ktoré odstráni malé ar-

tefakty ponechané po funkcii prahovania.

5. Predchádzajúce kroky nám vytvorili "prototyp" pseudo-masky. V ďalšom

kroku použijeme tento prototyp pre algoritmus značkami-riadeného waters-

hedu (ang. mark-controlled watershed) spolu s pôvodnou verziou obrázku.

Výsledkom je hotová pseudo-maska pre oblasť jedného bukového jadra.

6. V poslednom kroku spojíme všetky pseudo-masky jednotlivých lymfocytov

a vytvoríme tak veľkú pseudo-masku veľkosti pôvodného obrázku.

Takto sme spolu dostali 24 rôznych pseudo-masiek pre jeden obrázok. Ďalší spôsob

vytvárania pseudo-masiek spočíval v zlučovaní týchto 24 do jednej. Tu sme použili

2 odlišné prístupy:

1. Zoradili sme masky podľa úspešnosti príslušného modelu (podľa Dice koefi-

cientu), a následne sme spojili 100%, 75%, 50% a 25% najlepších masiek do

jednej.

2. Nechali sme hlasovať všetky masky pre každý pixel. Aby mohol byť pixel

označený ako popredie (jadro lymfocytu), muselo zaň hlasovať 24/24, 23/24,

22/24 alebo 21/24 masiek.

Týmito prístupmi sme získali ďalších 8 sád masiek.

7.3.4 Experimenty

Náš navrhovaný systém sa vyvíjal s každým vykonaným experimentom, pretože

každý experiment nadväzoval na predchádzajúci. Každý experiment bol vykonaný
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trikrát, aby sa znížilo riziko, že náhodná inicializácia parametrov modelu alebo

rozdelenie trénovacích údajov na trénovaciu a validačnú sadu výrazne zlepší alebo

výrazne zhorší konečné výsledky.

Pri prvom experimente sme použili len samotný model U-Net ako model hlbokého

učenia. Na túto úlohu sa použil plne anotovaný TNBC dataset. Vo výsledku tohto

experimentu môžeme vidieť, že trénovanie modelu len na malej dátovej vzorke, hoci

plne anotovanej, je nepostačujúce. Model dosiahol Dice koeficient 18,91% a IoU

10,64%.

V druhom experimente sa použili pseudo-masky vytvorené kombináciou rôznych

verzii obrázka a rôznych techník počítačového videnia. Pseudo-masky boli genero-

vané pre slabo anotovaný súbor údajov TIGER z poskytnutých anotácií ohraniču-

júcich rámčekov. Tie sa potom použili na následné trénovanie modelu U-Net, ktorý

bol trénovaný na datasete TIGER. Na konečnú evaluáciu modelu sa použil dataset

TNBC. Model natrénovaný na každej sade pseudo-masiek dosiahol výrazne lepšie

výsledky oproti modelu trénovanému len na TNBC datasete. Najlepší výsledok

dosiahol model trénovaný s hemtoxylínovou pseudo-maskou s vyrovnaním histo-

gramu (ang. histogram equalization), kde sa nepoužilo rozmazanie a bola použitá

Otsu funkcia prahovania. Dosiahol Dice koeficient 52,57% a IoU 36,01%.

Tretí experiment nadväzuje na druhý. Porovnávali sme v ňom rôzne stratégie zlu-

čovania súborov masiek. Opäť sme tieto zlučované masky použili na trénovanie

modelu U-Net na datasete TIGER a na konečné vyhodnotenie sa použil dataset

TNBC. Jednoznačne lepšie výsledky dosiahol prístup zlučovania masiek prostred-

níctvom hlasovania, pričom najlepší spôsob hlasovania bol ten, v ktorom za každý

pixel hlasovalo 23/24 masiek. Takto trénovaný model dosiahol Dice koeficient

53,53% a IoU 37,42%.

Vo štvrtom experimente sme využili stratégiu učenia s prenosom (ang. transfer
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learning), pri ktorej sme použili najlepší model natrénovaný počas tretieho experi-

mentu a dotrénovali ho na TNBC datasete. Experimentovali sme aj so zamrazením

enkóderu počas dotrénovania. Model som zamrazeným enkóderom dosiahol naj-

lepšie výsledky, Dice 57.59% a IoU 41.25%.

7.4 Záver

Cieľom tejto práce bolo vyvinúť hybridný prístup, ktorý by sa dokázal vyspo-

riadať s bežnými výzvami pri automatizovanej sémantickej segmentácii lekárskych

snímok. Konkrétne, výzvy predstavovali malý objem plne anotovaných dát a veľký

objem dát, ktoré sú len slabo anotované. Úlohou bolo segmentovať jadrá lymfo-

cytov. Aj to bola veľká výzva, pretože mnohé najmodernejšie práce pracujú so

slabými anotáciami vo forme ohraničujúcich boxov, ale ich cieľom je vykonať seg-

mentáciu jadier bez ohľadu na triedu bunkových jadier, zatiaľ čo v našej práci

sa snažíme segmentovať špecifickú triedu jadier - jadrá lymfocytov. Podľa našich

najlepších vedomostí v čase písania tejto práce nie je k dispozícii takmer žiadna

výskumná práca týkajúca sa presne tohto nášho špecifického nastavenia. Na túto

úlohu sme použili dva verejne dostupné datasety: TIGER [15] dataset s anotáciami

ohraničujúcich rámčekov jadier lymfocytov a dataset TNBC [78], ktorý poskytoval

úplné anotácie vo forme masiek jadier lymfocytov na úrovni pixelov.

Vybrali sme model hlbokého učenia na základe najnovších poznatkov a použili sme

známe metódy tradičného počítačového videnia, ako sú Otsu a adaptívne praho-

vanie a algoritmus značkami-riadeného watershedu, na prípravu rôznych súborov

pseudo-masiek z anotácií ohraničujúcich polí. Potom sme ďalej vychádzali z myš-

lienky, že každá sada by mohla fungovať lepšie na rôznych obrázkoch, takže sme

vyvinuli rôzne stratégie zlúčenia pseudo-masiek.

V experimentoch sme dokázali, že trénovať model len na veľmi malom, hoci plne
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anotovanom, datasete TNBC je nedostatočné. Ten istý model, keď bol natréno-

vaný na väčšom datasete TIGER, aj keď s pseudo-maskami použitými počas tréno-

vania, dosiahol lepšie výsledky v porovnaní s modelom natrénovaným výlučne na

súbore údajov TNBC, a to z hľadiska koeficientu Dice aj IoU. Model, ktorý použí-

val najlepšie zlúčenú pseudo-masku, sa dokázal ešte viac zlepšiť v metrikách Dice

koeficientu aj IoU. Konečný model, ktorý bol predtrénovaný na datasete TIGER

s pseudo-maskami a potom dotrénovaný na datasete TNBC, dokázal dosiahnuť

najlepšie výsledky v koeficiente Dice a IoU spomedzi všetkých modelov.

Medzi možné budúce zlepšenia môže patriť plne automatizovaný proces so samou-

čiacou sa slučkou, kde v prvej iterácii natrénujeme model pomocou pseudo-masiek

vytvorených prostredníctvom sekvencie tradičných metód počítačového videnia,

potom ho necháme predpovedať masky na tom istom súbore údajov, na ktorom

bol natrénovaný, vďaka čomu vytvoríme "druhú generáciu" pseudo-masiek. Ná-

sledne by sa model natrénoval na tejto druhej generácii pseudo-masiek a celý tento

proces by sa iteratívne opakoval.
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Appendix A

Plan of Work

Bachelor’s thesis evidence number: FIIT-100241-116291

A.1 Winter Semester

In Table A.1, we can see a summarized plan of work for the winter semester. During

this time, we familiarizing ourselves with the whole topic of weak segmentation and

traditional methods of computer vision. We also explored the available datasets,

and after we selected the TIGER dataset, we explored it in more depth. We were

studying the state-of-the-art work, gathering information, and running preliminary

experiments. Later, we constructed an initial concept of experiments that should

be performed. The experiments were performed more slowly than we anticipated

because of the complicated dataset features, which caused us a slight delay, but on

the other hand, we were now very confident in the dataset usage and knew better

what we should do next to be successful.
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Table A.1: Plan of Work for Winter Semester

Week Planned Work
1-2 Literature review on digital pathology and TIL detection.
3-6 Study of deep learning techniques and architectures (CNNs, U-Net,

Vision Transformers) and different pseudo-label generation techniques
(GrabCut, watershed, Otsu).

7 Familiarization with the TIGER dataset.
8-10 Initial development of the pipeline to convert bounding box annota-

tions to pixel masks. Preparing the mid-term report.
11-13 Preparing mid-term report, finishing analysis, summarizing progress

and findings.

A.2 Summer Semester

The Table A.2 displays the plan for the summer semester. During this time, we

had a large portion of work to do. We selected a TNBC dataset, which was fully

annotated, as another dataset to be included in this work. We had to implement

24 different strategies for pseudo-mask generation and then perform the model

training on all of them, and select the best one. We also came up with different

methods of generating pseudo-masks (fusing the original 24 pseudo-masks), mean-

ing that we had another large portion of experiments to perform. Then, a transfer

learning approach idea came for the final model, which was the most successful.

During the whole semester, we performed almost 600 trainings, and in comparison

to the winter semester, the whole work has picked up speed. As we mentioned,

we were adding more experiments as the work progressed. We were able to suc-

cessfully build the pipeline of computer vision operations that generated different

pseudo-masks, prepare the U-Net segmentation model, and were able to train it

in the Azure cloud environment.

Given the many challenges we had to overcome, like the weakly annotated TIGER

dataset, a very small TNBC dataset, inconsistencies across the datasets, and the
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challenging task of segmenting only a specific class of cell nuclei (not all cell nuclei),

we conclude that this plan was fully adhered to and completed.

Table A.2: Plan of Work for Summer Semester

Week Planned Work
1-2 Continuing with the computer vision pipeline development.
3 Testing and refining the pseudo-label generation algorithm.

4-8 Implementing, training, and evaluation of the U-Net segmentation
model trained with various pseudo-masks. Analysis of the model using
evaluation metrics (IoU, Dice coefficient).

9 Final experiments, preparation of the final thesis outline.
10-12 Writing and presenting the final report with results and conclusions.

13 Submission of final thesis.
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Technical Documentation

B.1 Project’s folder structure

.

configs/

azure_connect_example.json

azure_job.yaml

azure_upload_data.yaml

model_train_base.yaml

paths.yaml

data/

processed_tiger/

processed_tnbc/

raw_tiger/

images/

coco_annotations_placeholder.json

raw_tnbc/
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images/

masks/

example_data/

processed_tiger/

processed_tnbc/

raw_tiger/

images/

tiger-coco.json

raw_tnbc/

images/

masks/

models/

src/

azure/

azure_conda.yaml

azure_train.ipynb

azure_upload_data.ipynb

models/

inference.ipynb

model_factory.py

til_dataset.py

image_preprocessor.py

image_stats.py

mask_generator.py

sample.py

utils.py

.amlignore
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.gitignore

main.ipynb

main.py

README.md

requirements.txt

B.2 Description of folders and files

B.2.1 root directory

.amlignore Here is a list of folders and files that are ignored when a job is

submitted to the Azure ML platform. When a job is submitted, Azure takes a

snapshot of the directory it is given as the source directory. The files listed in

.amlignore will be ignored by this operation.

.gitignore Files to be ignored by the Git versioning system.

main.ipynb In this Jupyter notebook, the whole preprocessing, pseudo-mask

generating, and pseudo-mask fusing pipeline can be run. It also provides the visu-

alizations of preprocessed images and pseudo-masks. This notebook has already

been executed, so you can also see the outputs of each cell. Open the main.ipynb

to see it.

main.py This is the main training and evaluation script. It can be run both

locally and on the Azure ML platform. See Section B.4 to see both possible

options.

README.md In this file, the document with the same content as in this Chap-

ter is.
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requirements.txt Contains Python dependencies that need to be installed to

run the project.

B.2.2 config directory files

azure_connect_example.json Contains the information required to authen-

ticate and connect to your Azure ML Workspace. You will need to fill out this

configuration file, otherwise, the connection will not be successful. Keep the struc-

ture, just change the values to match your account.

azure_job.yaml Contains all configuration values that are used to submit the

job run, which will train the model. These include the data asset information, the

environment information (environment where the job will run), the job informa-

tion (like source directory to push to Azure ML, compute target, etc.), and the

arguments to be passed to the main.py function once it is executed.

azure_upload_data.yaml Here is the information about the folder you want

to upload to the Azure storage, the destination folder on Azure ML, and options

to overwrite already existing files and see the progress of the whole process.

model_train_base.yaml Contains the hyperparameters that are used by the

model during the training and evaluation. It also contains the option to load the

pre-trained model.

paths.yaml This file contains all paths, or parts of paths, where the images are

being stored, created, modified, and updated, and from which are loaded during

the preprocessing. The whole folder structure for the preprocessing and pseudo-

mask creation is created in the ./main.ipynb notebook, where the full paths

are built. Note that by default, all file manipulations are performed under the
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/example_data directory (unless changed in this config). For the demo, we rec-

ommend keeping this configuration file as is. For the real preprocessing, we advise

changing the root_data_dir value to point to the /data directory.

B.2.3 data and example_data directories

The data directory contains four main subdirectories. Here the images and anno-

tations of the respective datasets should reside (TIGER1 and TNBC2 datasets).

We do not include the actual images and masks here, because of their large size,

but when running a real preprocessing, you should place them here and change the

root_data_dir value in the /configs/paths.yaml file to point to the /data di-

rectory. The /data/raw_* folders contain the raw images and annotations (bound-

ing box for TIGER - in the COCO JSON format3, PNG masks for TNBC). The

/data/preprocessed_* directories contain more subdirectories that are created

during the run of the ./main.ipynb notebook. The most important ones are:

• /data/preprocessed_*/patches/images which contains the 128×128 nor-

malized image patches

• /data/preprocessed_*/patches/masks which contains the 128×128 mask

(or pseudo-mask) patches

• /data/preprocessed_tnbc/patches/folds which contains TNBC image

and mask patches, but split into folds, where each fold directory has

/data/preprocessed_tnbc/patches/folds/fold_*/images and

/data/preprocessed_tnbc/patches/folds/fold_*/masks folder

Note that this directory is meant to be used for real preprocessing, and you need
1https://tiger.grand-challenge.org/Data/
2https://zenodo.org/records/3552674
3https://roboflow.com/formats/coco-json
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to put here the correct images and annotations yourself.

The /example_data directory follows the same structure, but already contains 10

example images from the TIGER dataset in the /data/raw_tiger/images sub-

directory, the tiger-coco.json file with the TIGER bounding box annotations

in the /data/raw_tiger subdirectory, and 4 images from the TNBC dataset in

the /data/raw_tnbc/images subdirectory and their corresponding masks in the

/data/raw_tnbc/masks subdirectory. This directory is by default listed as the

root_data_dir in the /configs/path.yaml file, so in order to run the Demo you

do not need to change anything in the /configs/path.yaml file.

B.2.4 models directory

Here, the models that you wish to save and use for future fine-tuning or reference

should be placed. We do not include any pre-trained model here, since the .ckpt

files are around 300MB in size.

B.2.5 src/azure directory

azure_conda.yaml Defines the dependencies that will be installed within Azure

ML environment.

azure_train.ipynb From this Jupyter notebook, the training is managed. This

involves authenticating, pulling the correct data asset path, creating the environ-

ment, and submitting the job to Azure ML. Use the

/configs/azure_connect_example.json, /configs/azure_job.yaml and

/configs/model_train_base.yaml to manage the configuration of parameters.

azure_upload_data.ipynb This Jupyter notebook is used to upload a locally

stored folder to the remote Azure ML data storage. Use the
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/configs/azure_upload_data.yaml to manage the configuration of parameters.

B.2.6 src/models directory

inference.ipynb In this Jupyter notebook, you run the inference of the model. A

pretrained model is required for this stage. The predictions are visualized. The in-

ference is run on the tnbc_sample_img_patch image from the /configs/paths.yaml

configuration file.

model_factory.py Here we define the architecture of the model.

til_dataset.py This file defines a utility class that is used to output the image

and mask pairs that are further used during the training and evaluation by the

PyTorch DataLoaders.

B.2.7 src/*.py files

image_preprocessor.py Contains the ImageProcessor class that groups all

the preprocessing functionalities.

image_stats.py Contains the ImageStats class that prints the statistics of the

folder that contains images, like average image height, width, area, etc.

mask_generator.py Contains the MaskGenerator class that groups all the

mask-generating and mask-fusing functionalities.

sample.py Contains the Sample class that is used for visualization of the image

and its mask.
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utils.py Contains all other utility functionalities, for example, for opening and

loading .json and .yaml files.

B.3 Installation guide

B.3.1 Prerequisites

Below, we list the necessary software requirements:

• Python version 3.12+

• pip version 23.2+

• Internet access to download packages

• Weights and Biases account for model logging

• Azure ML access (if you wish to train models there)

B.3.2 Clone the repository

Clone this repository and navigate into it:

1 git clone <repository-name>

2 cd <cloned-repository-name>

Alternatively, you can download the .zip file of this project, unpack it, and open

a terminal within it.

B.3.3 Set up the Python environment

Set up the virtual environment using pip (or create Conda environment, but we

will be using pip).
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Using MacOS:

1 python3 -m venv .venv

2 source .venv/bin/activate

or Windows (from PowerShell):

1 python -m venv .venv

2 .\.venv\Scripts\Activate.ps1

B.3.4 Install dependencies

Dependencies are listed in the requirements.txt file. To install them all, use:

1 pip install -r requirements.txt

B.4 How to run the Demo

Here we present a way to run the demo version (using the demo data placed

in the /example_data folder). Be aware of the fact that since we only have 10

training images and 4 testing images in this demo, the model’s performance will

not be representative of real-world results. This is just to showcase how the project

works. Also, note that our project works with the PNG images only.

B.4.1 Preprocessing and pseudo-mask creation

1. Navigate to the ./main.ipynb Jupyter notebook. You will notice that the

notebook has already been executed (for the demonstration). Feel free to

examine it before trying to run anything.
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2. Next, make sure that you clear all outputs (to avoid any confusion) and

start running it cell after cell (or all at once). You will notice that under

the /example_data/processed_* directories, different subdirectories will

appear. Those will be populated with different images or versions of im-

ages and masks during the preprocessing and pseudo-mask creation. During

the execution of the cells, you will also see the textual and visual output

responses.

3. After the whole notebook is executed, feel free to examine the different sub-

directories that were created - but be careful not to delete, move, or rename

any of them or their contents.

4. The data is now prepared for the training.

B.4.2 Training on Azure

Here we describe the necessary steps that are required to be able to train the model

on the Azure ML platform.

1. Ensure you have access to an Azure ML workspace and all the required in-

formation. Fill them in the /configs/azure_connect_example.json con-

figuration file.

2. Ensure that the information in the /configs/azure_upload_data.yaml con-

figuration file is correct. You will need to input the correct target_path as

this is not provided by us!

3. Then navigate into the ./src/azure/azure_upload_data.ipynb and run it

cell by cell. Be especially careful with the local and remote directory paths.

The contents of the local directory will be copied into the remote directory.

4. After the data has been uploaded, you will need to create the Azure Data
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Asset. See the official Azure documentation4 how to do it.

5. Then you will need to create an Azure compute instance. See this official

Azure documentation5 for precise instructions.

6. Next, you will need to modify /configs/azure_job.yaml file, as we cannot

provide defaults for certain variables:

• See the dataset top-level key. You need to input the name of the Data

Asset and its version you created in Step 4.

• See the job top-level key. You need to change the job.compute to have

the name of the compute instance target you created in Step 5.

• See the jobs.args.wandb key. You will need to input your Weights and

Biases key, so the training and evaluation process can be monitored. See

the official guide6 on how to get the key.

7. (Optional) If you wish, you can try to change the model parameters; you

can do so in the /configs/model_train_base.yaml file, but this step is

optional.

8. Now navigate to the ./src/azure/azure_train.ipynb and follow the in-

structions within it to submit the training and evaluation job to the Azure

ML platform.

9. During the training, you can see and monitor the whole process in your

Weights and Biases account.

10. After the training and evaluation are done, look for the outputs folder in
4https://learn.microsoft.com/en-us/azure/machine-learning/

how-to-create-data-assets
5https://learn.microsoft.com/en-us/azure/machine-learning/

how-to-create-compute-instance
6https://docs.wandb.ai/support/find_api_key/
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the job details on the Azure ML platform. It should be in the Outputs +

logs tab, but the Azure ML platform UI changes constantly.

11. You can download the trained model from the outputs/checkpoints/best.ckpt.

Be aware that the checkpoint file is around 300MB in size.

B.4.3 Training locally

This option presents a way to run the training and evaluation locally. Note that the

Demo will work just fine, since there is only a fraction of the size of a real dataset,

but when training with a large dataset, the time to train the model locally can be

significantly longer.

Follow these steps:

1. (Optional) If you wish, you can try to change the model parameters in the

/configs/model_train_base.yaml file, but this step is optional.

2. Run the main.py script. Be sure to input your correct Weights and Biases

key. See the official guide7 on how to get the key.

1 python3 main.py \

2 --data_path './example_data' \

3 --wandb '<your-wandb-key>' \

4 --train_images_path 'processed_tiger/patches/images' \

5 --train_masks_path

'processed_tiger/patches/masks/fused_leave_1_out' \↪→

6 --test_images_path 'processed_tnbc/patches/images' \

7 --test_masks_path 'processed_tnbc/patches/masks'

7https://docs.wandb.ai/support/find_api_key/
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3. During the training, you can see and monitor the whole process in your

Weights and Biases account.

4. Once the training finished, you will notice that a new /outputs directory

was created. This contains both the trained model in the

/outputs/checkpoints/best.ckpt file and the raw Weights and Biases logs

in the outputs/wandb folder. Furthermore, it contains a

outputs/test_results.json with the evaluation metrics from the evalua-

tion phase.

B.4.4 Inference

To see how the model works during inference, navigate to the

./src/models/inference.ipynb. Notice that this notebook has already been

executed as well; feel free to examine it and then clear the outputs (to avoid any

confusion). You will need to input the path to the trained model .ckpt file, as

we do not provide a trained model in the demo. Run the notebook and see the

results!
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