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In this thesis, we look at state-of-the-art weak segmentation techniques in digital
pathology, focusing on segmenting lymphocyte cell nuclei in breast cancer patients.
The main challenge stems from the weak annotations of nuclei in the form of
bounding boxes instead of exact pixel-level masks. To tackle this challenge, we
introduce a hybrid approach, where we use traditional computer vision techniques,
such as Otsu and adaptive thresholding, and marked watershed, to create pixel-
level pseudo-masks that are used to train a U-Net model. We show that using a
small, although fully annotated, dataset is insufficient to train the model. Next, we
try training the model on the pseudo-masks created by different computer vision
pipelines, on the large weakly annotated dataset. To use the combined strength of
different pseudo-masks, we then try making a second generation of them by trying
various fusion strategies. Finally, we tried a transfer learning approach, where a
model pretrained on a large dataset with pseudo-masks is fine-tuned on a small,
fully annotated dataset, and this model achieved the best results. We evaluate each
model using quantitative metrics such as the Dice coefficient and the intersection

over the union, and qualitative metrics by visualizing its predictions.
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V tejto praci sa zaoberame technikami slabej segmentacie v digitalnej patologii
so zameranim na segmentéaciu jadier lymfocytov u pacientov s rakovinou prsnika.
Hlavna vyzva vyplyva zo slabych anotécii jadier vo forme ohranic¢ujicich ramdéekov
namiesto presnych masiek na trovni pixelov. Na rieSenie tejto vyzvy zavadzame
hybridny pristup, kde pouzivame tradi¢né techniky pocitacového videnia, ako si
Otsu a adaptivne prahovanie, a znackami-riadeny algoritmus watershed, na vytvo-
renie pseudo-masiek, ktoré sa pouzivaji na trénovanie modelu U-Net. Ukazujeme,
ze pouzitie malého, plne anotovaného datasetu je na trénovanie modelu nedosta-
tocné. balej vysktsame trénovat model na pseudo-maskach vytvorenych roznymi
metodami pocitacového videnia na velkom, slabo anotovanom datasete. Aby sme
vyuzili kombinovanu silu réznych pseudo-masiek, vytvorime ich druht generaciu
vyskiSanim roznych stratégii zlicenia. Nakoniec pouzijeme pristup ucenia s preno-
som, kde sa model predtrénovany na velkom datasete s pseudo-maskami dotrénuje
na malom, plne anotovanom datasete, pricom tento model dosiahol najlepsie vy-
sledky. Kazdy model hodnotime pomocou kvantitativnych metrik, ako st Dice

koeficient a IoU, a kvalitativnych metrik vizualizdciou jeho predpovedi.
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Chapter 1

Introduction

In the past few years, algorithms of computer vision and especially artificial in-
telligence and deep neural networks brought promising results in image data pro-
cessing, mostly in the tasks of object detection, semantic segmentation, and clas-
sification [1]. These advancements may have a significant impact in a vast number

of fields, one of them being medicine |2, 3, 4].

In medicine, different types of imaging techniques are being used to provide both
non-invasive and invasive visualizations of internal organs, tissues, and other struc-
tures. Among non-invasive techniques, we can count, for example, X-ray radiog-
raphy, ultrasound imaging, magnetic resonance imaging (MRI), and computed to-
mography (CT). Apart from them, we also mentioned invasive techniques - these
are necessary when doctors need to examine a microscopic piece of tissue, e.g.,
potential tumor tissue or tissue that is known to be a tumor. This is a discipline
called histology or histopathology. Doctors can obtain the tissue either by per-
forming a biopsy or surgical resection. Biopsy is a less invasive method - it involves
inserting a needle into the patient’s body tissue and taking out a small sample. On

the other hand, surgical resection is much more invasive and involves some sort of
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surgical procedure during which the desired piece of tissue is removed. Depending
on what doctors want to examine, these samples are then processed further. In
the histopathology domain, staining of these images with chemicals is a common
practice. This staining helps to create visual contrast between cells, tissues, and
other objects on the image slide. Hematoxylin and eosin staining (H&E staining)
is the most widely used staining method for histopathology slides [5]. Both its
components are used to stain different regions of the image. Hematoxylin is re-
sponsible for colorizing cell nuclei into shades of deep blue and purple, while eosin
is used for staining the extracellular matrix, cytoplasm, and connective tissues in
shades of pale red and pink [5]. An example of this staining on a histopathology

image can be seen in Figure 1.1.

Figure 1.1: Example of histology image stained with hematoxylin and eosin

Slides stained by these chemicals are then examined by histopathology experts
who try to identify key features that would determine a diagnosis, future treat-
ment plan, or other subsequent steps. A very good example of this whole process

can serve as a method of adjusting treatment for patients who suffer from breast
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cancer.

1.1 Motivation

In recent decades, breast cancer has been one of the leading causes of death among
women and the second most commonly diagnosed type of cancer worldwide [6, 7].
According to [6] in 2022, breast cancer was attributed to approximately 2.3 million
newly diagnosed patients - this represents 11.6% of all diagnosed cancer patients
in that year and 666,000 deaths, comprising 6.9% of all cancer deaths. [7]| informs
that in the USA in the year of 2023, breast cancer among women accounted for
more than 297,000 new cases - 31% of all new female cancer cases and more than

43,000 deaths - 15% of all female cancer deaths.

When dealing with breast cancer, one needs to keep in mind that there are also
different subtypes of breast cancer. Firstly introduced in [8], we now know four
breast cancer molecular subtypes, based on the positivity or negativity of sev-
eral receptors. These receptors are Human Epidermal Growth Factor Receptor 2
(HER2) and Hormonal Receptor (HR), which are positive if either Estrogen or
Progesterone receptors are positive; otherwise, it is negative. These four classes,

along with respective receptor statuses, can be seen in Table 1.1.

Table 1.1: Breast Cancer Molecular Subtypes and Receptor Statuses

Subtype Class Hormone Receptor (HR) | HER2
Luminal A Positive Negative
Luminal B Positive Positive
HER2-enriched Negative Positive
Triple Negative (TNBC) Negative Negative

From the aforementioned subtypes, the last three are the ones that currently have

the worst prognosis |9, 10]. Identifying and using certain biomarkers could po-
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tentially improve the prognosis of patients with these subtypes of breast cancer.
Tumor-infiltrating lymphocytes (TILs) appear as such biomarkers, especially their
presence, number, and spatial organization within the tumor and tumor-related
tissue [11, 12, 13|. However, manual identification and visual recognition of TILs
from H&E-stained slides is a difficult, time-consuming, and error-prone task even

when performed by experienced histopathology experts [11, 13].

1.2 Objectives

Manual analysis of histopathology slides is expensive, takes a long time to com-
plete, and requires highly trained professionals and quality assurance by perform-
ing peer reviews [4]. With the invention of virtual microscopy, which enables
H&E-stained glass slides to be converted into digital slides, and the introduction
of Whole-slide Images (WSIs), the field is entering a new era. The term Digital
Pathology or Digital Histopathology is often used. In Digital Pathology, much
effort is put into developing tools that would help medical experts to semi- or fully
automate the visual analysis of the digital slides. Entities such as different tissue

types and cells can be identified and classified.

Deep learning has shown extreme potential in many areas, including medicine and
processing of medical image data [1]. The usage of deep learning models also in-
troduces a new challenge: for them to produce reasonably good results, they need
a huge amount of high-quality data [14]. Precise manual annotation of histology
slides is not an easy nor a cheap task, as we have mentioned earlier. Therefore,
our aim in this work is to develop and implement a pipeline for automated seg-
mentation of tumor-infiltrating lymphocytes from breast cancer histology image

slides using two sources of data:

e Tumor Infiltrating Lymphocytes in Breast Cancer - TIGER - a large dataset

4
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with weak annotations of lymphocyte nuclei, in the form of bounding boxes,

which is publicly available via the Grand Challenge platform [15] and

e Triple Negative Breast Cancer Nuclei Segmentation - TNBC - a small dataset
with full pixel-level annotations of lymphocyte nuclei, which is also publicly

available [16].

Since the provided weak annotations of the TILs are in the form of bounding boxes,

our goal is twofold:

1. Develop, implement, and compare different strategies for creating pseudo-
masks by converting bounding box annotations into pixel mask annotations

by utilizing methods of traditional computer vision and

2. Train a deep learning segmentation model, using different combinations of
pseudo-masks, and evaluate it on the evaluation metrics such as Intersection

over Union (IoU) and Dice coefficient.

In the end, we want to compare models trained on various pseudo-mask creation
strategies in the semantic segmentation task of individual lymphocyte nuclei, uti-
lizing both a weakly annotated large dataset and a small, fully annotated dataset
of H&E-stained histology images of breast cancer patients. We also want to utilize
transfer learning, where we pre-train the model on the TIGER dataset and then

fine-tune it using the TNBC dataset.

This work is structured in the following way: Chapter 2 describes the concept of
computer vision and machine learning. Chapter 3 looks at the history and current
trends in deep learning. Chapter 4 describes the state-of-the-art works in our field
of interest. In Chapter 5 we present our work, and in Chapter 6 we conclude the
work. In Appendix A we show the plan of work, and in Appendix B we include

the technical documentation for our work.
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Computer Vision and Machine

Learning

Vision is one of our primary senses. Therefore, it is understandable that we seek
methods for capturing, storing, analyzing, and processing this kind of data. Dig-
ital image processing is a vast area of different disciplines, ranging from low-level
operations such as noise reduction, image sharpening, and contrast adjustment
through mid-level operations like classification and segmentation to high-level op-
erations which involve making higher sense of the images and resembling human

visual perception and intelligence [17].

Computer Vision, a subfield of computer science and an extension of digital image
processing, focuses on using computers to extract meaningful knowledge from im-
ages in various ways, thereby emulating the capabilities of the human brain and
visual cortex [17]. As part of machine learning and artificial intelligence, computer
vision uses automation algorithms to analyze and process visual data, including

2D and 3D images as well as videos [18, 19].
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Machine learning is a subset of artificial intelligence that includes both statistical
learning and deep learning algorithms to make intelligent decisions based on data.
Modern computer vision primarily utilizes deep learning techniques, as illustrated
in Figure 2.1. In classical programming, we are designing an explicit program that
produces desired outputs for specific inputs. In machine learning, however, we let
the machine design an appropriate program, given the specified set of inputs and
outputs (labels) by analyzing the features and patterns of the input with relation

to the output [20].

Computer Science
Artificial Intelligence

L J

P—— |

Machine Learning <

Deep Learning

Statistical Learning

Speech Recognition I Natural Language Processing I

\ 4

{ Surgical Robu!ics} TLILT o IMudem Computer Vision I‘——' Convolutional Neural Networks I

Supervised Learning IUDSUPEMSEG Learning I Iﬂeinforcernenl Learning I

Figure 2.1: Division of AI/ML [19].

With the advent of deep learning [1] and especially convolutional neural networks

[21], computer vision is now a field of huge interest.

2.1 Preprocessing

Since the machine learning algorithms try to examine the relationship between
input and output, we need to ensure an appropriate quality of the input data. Es-

pecially in medical imaging and digital histopathology, where the different staining

7
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techniques, scanning tools, or position of the tissue can vary widely, and this can

affect the further analysis [22].

In the domain of digital histopathology, a common issue is the varying intensities
of purple, red, and pink tones of H&E-stained slides [22|. For this purpose, dif-
ferent stain normalization techniques were created. Among the examples, we can
list the Macenko, Reinhart, or Zheng normalization techniques, which try to nor-
malize the dataset of input images [22]. Among some other techniques, we can list
the histogram equalization, Contrast-Limited Adaptive Histogram Equalization

(CLAHE), and the power law (gamma) transformation [23].

2.2 Core Computer Vision Tasks

When analyzing an image, we can come across the three main tasks [20]. The

example of each of these tasks can be seen in Figure 2.2.

BOTTLE BAT, BOTTLE, BALL BAT, BOTTLE, BALL

(a) Classification  (b) Object Localization (c) Object Detection (d) Segmentation

Figure 2.2: Different Computer Vision tasks [20].

2.2.1 Image Classification

Image classification is used when we have a label categorizing the image into one
of the classes (or multiple classes) in the set of classes [20]. For example, in the
medical imaging domain, we could label an image with the "disease" or "non-

disease" class.
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2.2.2 Object Localization and Object Detection

Object localization and object detection are very similar tasks. While the former
is a task of localizing a single object instance in the image, the latter is a task

where multiple instances of one or many objects should be detected and bounded

120].

2.2.3 Segmentation

Sometimes we want to get a more detailed label than just an approximate object lo-
cation (bounding rectangle). Segmentation utilizes pixel-level classification, where
pixels can be labeled based on their relationship to various classes. According to

[20], we know two main types of segmentation:

e Semantic segmentation, where each pixel of a certain class gets the same

label, no matter the number of instances, and

e Instance segmentation, where the pixels of different instances of the same

class are distinguished as well.

Apart from the currently most popular and interesting segmentation algorithms
using deep learning, we also know some traditional segmentation techniques, like

the Otsu thresholding, adaptive thresholding, and watershed algorithm.

2.3 Learning Paradigms

Computer vision algorithms can be further divided by how they can learn from

the data [20].

Supervised Learning In the supervised learning tasks, both the data and their

respective labels are known and are available to the model during the training.
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Typical supervised learning tasks include classification, detection, and segmenta-
tion. By the quality and precision of the labels and the task goal, we can split

supervised learning into three categories:

e Standard supervised learning, when available labels are of the same quality

as the labels we want to predict, e.g., bounding box to bounding box.

e Strong supervised learning, when the training labels contain richer informa-
tion than the labels we want to predict, e.g., bounding box from pixel-level

annotations.

e Weak supervised learning, when the training labels contain less precise infor-
mation than the labels we want to predict, e.g., a bounding box from image

image-level annotation.

Unsupervised Learning In unsupervised learning, on the other hand, the data
labels are not available to the model during the training. The model itself must
discover the patterns directly from the raw input, for example by grouping similar
samples into clusters (e.g., k-means or hierarchical clustering), reducing dimension-
ality to capture the most informative features (e.g., principal component analysis
or autoencoders), or learning a compact representation through self-organizing
maps or generative models. Examples of tasks include: anomaly detection, where
outliers stand out from the norm, and density estimation, where the goal is to
model the underlying data distribution. Because no true labels guide the process,
evaluation often relies on intrinsic measures (such as silhouette score for clusters)
or downstream performance when those representations are fed into supervised

tasks.

10
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Deep Neural Networks

The history of artificial neural networks (ANN) dates back to 1943. In [24] authors
tried to mathematically describe the activity of biological neurons in the human
brain. Using these principles, they built the first artificial neuron and artificial
neural network. In 1974, a PhD student, Paul Werbos, introduced in [25] the
idea of backpropagation of errors by which ANNs can learn other than linearly
separable problems, and this idea was further expanded in [26]. Artificial neural
networks that contain many hidden layers are also called deep neural networks
(DNN), and the process of training this network is called deep learning [1]. Over
the years, deep learning and one of its variants - a convolutional neural network
that was proposed in [27| - were found to be very effective and precise in domains
that were found unreachable by the classical AI and ML algorithms [1]. This
was caused by their ability to capture abstract and complex patterns that simpler
models found impossible to catch. Such examples include analysis of image data

[28, 29] and recent advancements in natural language processing (NLP) [30].

11
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3.1 Structure

The fundamental part of every artificial neural network is the neuron. A neuron
is basically a function that has one or more inputs and one output. Inside this
neuron, a mathematical computation is being done to transform input into output.
Input can also be referred to as an input vector or a vector of input features. Each
input feature has its own weight by which it is multiplied. Next, a bias is added to
the multiplied and summed features and weights. This calculation is still linear, so
for it to be able to capture more complex patterns, we need to apply a non-linear
activation function to its output. The mathematical representation of an artificial

neuron can be seen in the Equations 3.1 and 3.2 [31].

z2=0b+ Z(wzxz) (3.1)
i=1
a = ¢(2) (3.2)
Where 2z is the output produced by the linear unit, b is the bias, n is the number

of input features, z; is the ¢-th input feature, w; is the weight associated with the

i-th input feature, a is the actual output, and ¢ is the activation function.

A visual example of the artificial neuron can be seen in Figure 3.1.

12
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Figure 3.1: Artificial neuron [32].

3.1.1 Activation Functions

Activation functions are used to break linearity in neural networks - this enables
them to capture more complex patterns, which are not linearly separable. Ac-
tivation functions are used in combination with linear functions inside neurons.
Different activation functions can be used, such as Sigmoid, Tanh, ReLU, ELU,
GELU, and many more [33, 34]. The important part of an activation function is

also its gradient, which is computed during backpropagation.

Sigmoid Sigmoid is computed by the Equation 3.3 and its derivative by the
Equation 3.4. As we can see in Figure 3.2 has a steep gradient around zero and it

gradually flattens on both sides.

o(z) = (3.3)

0 (2) = a(2)(1 = o(2)) (3.4)

13
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Figure 3.2: Sigmoid activation function (red) and its derivative (green) [35].

The output of the sigmoid is bound between zero and one, and its gradient can be
used to push the output either closer to one or closer to zero [35]. It is often used
for the output unit for the binary classification task, where the output is desired

to be between zero and one (35, 31].

Tanh Next function is the tanh activation function, given by the Equation 3.5

and its respective derivative displayed on the equation 3.6.

e — e~ %

tanh(z) = —— 3.5
anh(z) = S (3.5
tanh' (z) = 1 — tanh?(z) (3.6)

Like the sigmoid function, it compresses the input; however, unlike the sigmoid,

its output is constrained to the range of -1 to 1, as shown in Figure 3.3.

14
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Figure 3.3: Tanh activation function (red) and its derivative (green) [35].

ReLU The problem with sigmoid and tanh functions is the vanishing gradient
and computational complexity. Vanishing gradient means that the gradient of a
function is almost flat, hence close to zero, which leads to no or very little update
in the network’s learnable parameters (weights and biases) during the training [33,

34].

As a possible solution to these problems, a rectified linear unit, also known as
ReLU, was introduced [36]. ReLU is a simple function; its Equation 3.7 and

derivative Equation 3.8 are straightforward.

z, if 2 >0, 1, if 2z >0,
ReLU(z) = (3.7) ReLU'(z) = (3.8)

0, ifz<0. 0, if z<0.
The ReLU function can be seen in Figure 3.4. It basically returns its input if the

input is positive otherwise, it returns zero. Since the derivative of x is always one,

the problem with vanishing gradient is solved.

15
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0

Figure 3.4: ReLU activation function (red) and its derivative (green) [35].

ReLU also introduces some potential drawbacks, i.e., the output for negative input
is always zero. The problem called dying ReLU [33, 35, 34| is when a negative
input causes no updates in weights during training, and neurons in this state do not
respond to error variations [35]. To fix this problem, we can multiply the negative
input value by a very small constant, which will allow the weights to be updated
if it is needed. This modified ReLU is called Leaky ReLU [37] and its formula and
formula of its gradient are displayed in Equations 3.9 and 3.10 respectively.

z, it z2>0, 1, ifz>0,
LeakyReLU(z) = LeakyReLU'(z) =
az, if z <0. a, if 2 <0.
(3.9) (3.10)

In addition to the Leaky ReLLU, many other ReLU variants were introduced over
the years, each bringing its own advantages, disadvantages, and challenges [33,

34].

Nowadays, the most commonly used activation function for hidden units is the

ReLU activation function [33, 31, 1].
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3.1.2 Layers

Similarly to biological neural networks, when artificial neurons are chained to-
gether, meaning the output from one neuron is passed to another neuron, they

create an artificial neural network.

This network is organized in layers. Neurons in each layer are not connected
together, but rather every neuron from layer L is connected with every neuron from
layer L+1, except neurons in the first (input) layer. For better understanding, we

will refer to the Figure 3.5, where we can see an example of a neural network.

Hidden Layers .

®

6] @]
B i R ‘® - ®5
SO g ‘® . ® &
_."-.:- _:. g

¢ e

(@]

o

Figure 3.5: Example of deep artificial neural network [38].

A neural network can be divided into three main parts:
e Input layer
e Hidden layers
e Qutput layer

Input layer is the initial layer and the only layer that does not contain neurons
which perform calculations but rather consists of N input features xq,xs,...,2n

also referred to as a vector & of input features displayed in equation 3.11.
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€
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(3.11)
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The subsequent layers between the input layer and output layer are called hidden
layers. The name comes from the fact that their outputs are not directly observ-
able, nor are they provided by the external environment - they are internal to the
network’s architecture. Neurons inside these layers perform calculations on the

input and produce output, which is then fed forward to the next layer [1].

The final output layer produces the output of the network. Output and number
of neurons depend on the task the network is being trained for. For regression
tasks, one neuron is often suitable - it predicts a continuous variable [31]. During
classification tasks, it can further depend on the nature of the classification. In
binary classification, again, a single neuron can suffice. It will display a probability
of the input belonging to one of the classes - if the probability is high, it will assign
that class to it, and if the probability is low, it will assign the other class to it
[31]. In multi-class classification, the number of neurons is the same as the number
of classes, and each neuron predicts a probability of the input belonging to one

specific class [31].

3.2 Loss Functions

Loss function, sometimes also referred to as cost function, is a function that com-
putes the difference between the result predicted by the model and the ground
truth. This difference is called an error. The error guides the model during train-

ing and is responsible for parameter updates. We are trying to find the local
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minimum of the cost function - a point where the error value is as low as possible,
because this means that the model is making good predictions. Hence, we are try-
ing to find a global minimum of the cost function. Similarly to different activation

functions, there is also a variety of cost functions.

Mean Squared Error Mean squared error (MSE) is computed as the sum of
all differences between predicted output and real values (ground truth) raised to
the power of two. The Equation 3.12 displays this computation, where m is the
number of input samples, y is the ground truth, and g is the output predicted by
the model. Despite being effective for regression problems, MSE is not suitable for

classification problems [35].

1
E :—§ i — 1) 3.12
MSE m 4 (ZJ 3/) ( )

Cross-entropy Loss Much more efficient loss functions for classification prob-
lems are the entropy-based ones. For example, for binary classification, a logistic
loss function, by which a binary cross-entropy error (BCE) is measured, is suitable
[35]. It is given by the Equation 3.13, where m is the number of input samples, y
is the ground truth, and ¢ is the predicted output.

m

Fo =~ 3" (§logy + (1 — §)(log (1 - ) (3.13)

=1

This function can be modified to compute error for multiclass classification as well
- this is also called categorical cross-entropy error (CCE). If we assume we have C'

distinct classes we want to assign input into (and input can belong to exactly one
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class), then the Equation 3.14 computes the error. Here m is the number of input
samples, C' is a set of classes, y; . is the ground truth for the ¢-th sample and c-th
class, usually represented as a one-hot encoded vector where y; . = 1 if the i-th
input belongs to the c-th class, and y;. = 0 and ;. is the predicted probability
for the i-th sample belonging to the c-th class.

m C
ECCE = _% Z Z yzclogyzc (314)

i=1 c=1

Dice Loss The most popular choice for the object segmentation task, and es-
pecially in the medical imaging domain, is the Dice loss function [39]. It uses
the Dice similarity coefficient (DSC) to compute the difference between predicted
map p and ground truth map y for each class j of C' classes. A slight problem
exists with the DSC - it is not differentiable, therefore it cannot be used directly in
training. To overcome this obstacle, neural networks use a probabilistic version of
DSC to the discrete DSC in training [39]. Its computation is displayed in Equation
3.15 where N depicts the number of pixels and € is a small constant used to avoid
division by zero. The computation of overall dice loss is displayed in Equation

3.16, where D; is the DSC computed for the ¢-th training sample.

N C
2> 1 22 j=1(UniPny) + €

D net D2je1Ynj + Do) €

(3.15)

m

1
EDiceLoss = E Z(l - Dz) (316)

=1
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3.3 Training

During the training phase, a neural network tries to minimize the cost function
by adjusting its parameters - weights and biases. This process is often called
learning, and we can say that the neural network learns to map input features
onto the desired output. Before the training process, we need to ensure that the
data is of the desired quality and quantity; otherwise, the training will not be
effective, and the performance of the resulting model will be poor. Methods such

as data preprocessing are typically used [31, 1].
The training itself consists of multiple steps:

1. Parameter initialization

2. Forward propagation

3. Cost function computation

4. Backpropagation and parameter updates

Parameter initialization During parameter initialization, we set the initial
values of all learnable parameters of the network (parameters that can be updated
during training). Different weight initialization strategies were developed; their

overview can be seen in Figure 3.6.

Interval based
initialization

N
Variance scaling

Random
initialization Py
) initialization
Without pre-
training
Data-driven
initialization

Figure 3.6: Different weight initialization strategies [40].

Other
Weight
Initialization
Strategies

With pre-training
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Methods such as Xavier/Glorot or He initialization are also popular [41].

Forward propagation During forward propagation, the input sample data is
fed forward through the layers of the network. For a hidden layer L with N

neurons, and activation function ¢:

e The input is output from previous layer L-1 (the activations), denoted:
Ap_1 € R™4 where m is the number of input samples, and d is the number
of input features of each sample. Number d is also equal to the number of

neurons present in layer L-1.

e Each neuron needs to have d weights, one for each input feature. A weight

matrix holding weights of all neurons in layer L can then be denoted as:

Wiy, € R&N

e Each neuron also holds a bias term, all biases in layer L can be represented

with vector b, € RY.

e Output matrix (the activations) returned by this layer can be denoted as:

Ap € R™¥ . This becomes input for the layer L+ 1.

A computation performed by an arbitrary hidden layer L with N neurons can be
calculated with Equations 3.17 to compute Z; € R™¥ pre-activation values, and
3.18 - to compute output of layer L. Function ¢ is applied element-wise on all

elements of the input matrix.

Zp=XW+b (3.17)
AL = p(Z) (3.18)
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The final output layer will then return the predicted output value for each sample.
At the beginning of the training, the output values will be almost random, but as
the training continues, the predicted values should converge towards the ground

truth values - this is the desired behavior [31, 1].

Cost function computation After the sample (or samples) are fed forward
through the network, we get either a matrix or vector of output values or a single
output value. The next step is to compute the error of the network using one of
the aforementioned cost functions, e.g., dice loss in the case of image data. The
error is then propagated backwards through the network, and weights and biases
are adjusted in a way that will minimize the cost function. This algorithm is called

backpropagation [31].

Backpropagation For a network to learn, it should implement some kind of al-
gorithm that will adjust its learnable parameters (weights and biases) in a way that
the overall error will be lower next time the input samples are fed forward through
the network. Backpropagation computes the gradients for each layer starting with
the output layer, and by utilizing the chain rule of calculus, it propagates the error

back through the network to the first hidden layer [1].

After the gradients are computed, the parameters are updated accordingly by
optimization algorithms such as stochastic gradient descent [35]. Formulas for
updating weights and biases are shown in Equations 3.19 and 3.20, where « is a
learning rate (which controls the speed of learning - if changes to the parameters
are too great, the minimum can be missed, if changes are too small, the minimum

will not be reached in a reasonable time) and E is the cost function [31, 1].
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w=w— ag—i (3.19)
OF

There is a strict rule for backpropagation to work - all functions used in the network

must be differentiable at all points |26, 35].

3.3.1 Optimization and Regularization

Optimization Many optimization techniques are capable of further enhancing

the model training and performance. Examples include:

e using small batches of input samples, and after each batch passes, perform

parameter updates,

e utilizing momentum [42] to have more control over the learning speed based

on the previous gradients [35],

e using adaptive learning rates, where the learning rate « is usually great
at the beginning, and as the training progresses, it is gradually reduced
[35]. Updates to o can be done after some number of iterations by some
preset factor or automatically by utilizing methods such as Adam (adaptive

moments) [43] or RMSProp [44].

Regularization Another set of techniques that can improve model performance
is regularization. Usually, a model’s performance and prediction capabilities im-
prove during training. Available data are often split into three subsets for training,
validation, and testing. The model is trained using the training subset. The val-

idation subset is used to check model performance during training, and the test
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subset is used for the final evaluation of the model. It is important that both
validation and test subsets contain samples the model has not yet seen during
training - otherwise, the results would be biased. A good model should be ro-
bust and generalize well, not only learn patterns that are specific to training data.
Sometimes, especially in more complex models, we can observe an effect when, at
the beginning of the training, both training and validation performance (such as
error value) improve, but later the validation performance plateaus or worsens -

this effect is called overfitting [45] and is displayed in Figure 3.7.

Valulation
-

Error

Training

Epochs

Figure 3.7: Error curve during training - overfitting happens [35].

This effect is not desired because it means that the model cannot generalize well
on previously unseen samples - it is learning "by heart" from the training data. To
overcome this problem, we can implement several regularization mechanisms that
will improve the model’s robustness and ability to generalize. Examples include
dropout [46], transfer learning [47], early stopping [48], parameter norm penalties
such as L1 regularization (lasso regression) and L2 regularization (ridge regression)

[49], and more [35].
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3.4 Evaluation Metrics

When evaluating a model’s performance, different metrics exist that can be used.
The evaluation metrics also depend on the task the model was trained for. During
classification tasks, depending on the predicted and real values for each sample,

we can differentiate four groups of results:

e True Positives (TP) - a model assigns a sample to class ¢ when a sample

belongs to class c,

e True Negatives (TN) - a model does not assign a sample to class ¢ when a

sample does not belong to class ¢

e False Positives (TP) - a model assigns a sample to class ¢ when a sample

does not belong to class ¢

e False Negatives (TN) - a model does not assign a sample to class ¢ when a

sample does belong to class ¢

We will briefly describe some of the evaluation metrics in the following para-

graphs.

Accuracy, Precision, Recall, and F1-score Calculation of these basic metrics
is displayed in Equations 3.21, 3.22, 3.23, and 3.24. They describe the relationships
between the number of samples belonging to either the true positive (TP), true

negative (TN), false positive (FP), or false negative (FN) groups.
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N - TP+ TN 3.21)
Ay = TP Y TN+ FP + FN ‘
Precision — — L1 (3.22)
recision = TP + FP .
TP
Recall = ——+ 3.23
T TPYEN (3.23)
Precision x Recall
F1 Score — 2 x —coston x neea (3.24)

Precision + Recall

Area Under the ROC Curve Receiver Operating Characteristics (ROC) Curve
and area under it can be used as another evaluation metric for classification and
is superior when compared to overall accuracy [50]. The ROC Curve is drawn
in the ROC Space as a relationship between the True Positive Rate (TPR, Re-
call or Sensitivity) and False Positive Rate (FPR) at the different threshold levels
[50, 51, 52]; the calculation of TPR and FPR is shown in the Equations 3.25 and
3.26.

- TP
FPR = Specificity = Recall = TP~ FN (3.25)
s FP
FPR=1-— Sp€ClﬁClty = FP-|-—TN (326)

The ROC Space and an example of ROC Curve are displayed in Figure 3.8. Area
under this curve (AUC - Area Under the ROC Curve) is then computed and

interpreted:
e if AUC = 1, this is the perfect model

e if AUC = 0.5, model capability is equal to random guess
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e if AUC < 0, performance of the model is worse than the random guess
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Figure 3.8: ROC Space with ROC Curve [51].

Intersection over Union Intersection over Union (IoU), also known as the
Jaccard Index, is a widely used evaluation metric in image segmentation and object
detection [53|. It is computed as the area of overlap between the predicted and
ground truth regions divided by the area of their union. The closer the resulting
value is to 1, the better the model predictions are [53|. Tts computation is shown
in Equation 3.27, where y is the true area and gy is the area predicted by the

model.

i
U =YY (3.27)
yUj

Dice Coefficient Similarly to the IoU, the Dice Coefficient is used for image

segmentation and detection tasks [2], and the closer the resulting value is to 1, the
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better the model predictions are. Its computation is given by the Equation 3.28,

where y is the true area and g is the area predicted by the model.

2ly N 9|

DiceCoefficient = ~
ly| + 9]

(3.28)

3.5 Architectures

Neural network architectures like Convolutional Neural Networks [27] and U-Net
[21] have proven to be effective in medical image analysis [35]. In recent years,
a concept of Vision Transformers [54, 2| used in medical imaging shows promis-
ing results [55, 2, 3]. In further sections, we describe each architecture and its

contribution to the analysis of medical images and Digital Pathology.

3.5.1 Convolutional Neural Networks

In 1959, Hubel and Wiesel conducted experiments that inspired the advent of the
Convolutional Neural Networks (CNN). In their experiments, they put a micro-
electrode into a cat’s brain (into the part called the primary visual cortex), while it
was under partial anesthesia. While showing various images to it, they measured
the neurological activity of the cortex [56]. According to the results, a hierarchical
pattern can be observed in the activity of the visual cortex, where the neurons
close to the retina captured the simplest patterns (like different illuminations and
lines under various angles) and the farther layers captured more complex patterns

(like geometric shapes and other complex visual patterns) [56].

CNN took advantage of these findings and rebuilt the classical neural network

layers to be able to capture more complex features with increasing depth. They
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utilize so-called convolution layers along with the ReLU activation function to
learn to extract relevant features from the image. The deeper the convolution

layer, the more complicated features it can learn [35].

Similarly to the Hubel and Wiesel cat’s visual cortex, the first layers can learn to
identify basic shapes like lines and simple geometric shapes, and the deeper layers
can learn to identify more complex ones. Such an example of CNN is shown in

Figure 3.9.

Edges Shapes Objects
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extractors
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Figure 3.9: Example of CNN learning strategy [35].

A convolution layer applies a series of operations on its input and produces an
output map. The most important part is applying a kernel, which is a tensor
of fixed width and height, over the input image or output map from the previ-
ous convolution layer. This fundamental operation serves as a feature-extracting
technique. The kernel slides over its input across its height and width, and at
each step, it performs element-wise multiplication of the pixel values it currently
overlaps at each layer of depth and then sums them together to produce a single
value. So, for example, if the input is of size 100 x 100 x 3 (standard RGB image

with 3 channels for red, green, and blue color), then the kernel is applied to all
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three channels simultaneously. After the kernel is applied to the whole image, the
resulting output map will be of size 100 x 100 x 1 (assuming that other hyperpa-
rameters of convolution are configured in such a manner that the original width
and height remain unchanged for the output map - we will cover them later in this

chapter), because the kernel will collapse its depth.

The kernel filters can be handcrafted to multiply and intensify certain properties
of the image. Examples include the Prewitt, Gabor, Sobel, Laplacian, and Roberts
filters for edge and gradient detection. In standard image processing, the weights
inside the kernel are preset. However, in the CNNs, these weights are learned
during training, so the network determines what features of the image the output
maps will be focused on, and hence the network can be more effective |35, 3].
In the AlexNet [57], the first deep CNN which outlined the original structure, a
ReLU activation function was applied to the value obtained from the convolution
operation to break the linearity of the operation. Since then, using an activation
function after the convolution operation has become a standard practice [35, 3],
and the name of the output produced by the convolution + ReLU is also called

an activation map.

According to the [35], convolution operation can be expressed as a function with
hyperparameters: @cony(Cin, Couts KK, S, P, D). The definition of these hyperparam-

eters is:
e (U}, is the number of channels of the input map - its depth.

e Cyy is the number of channels of the output produced by the layer - it is
also the number of filters that will be applied to the input map since one

filter produces an activation map with one channel.

e K is a tuple that defines the size of the kernel - its width (k,) and height
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(k)

e S is also a tuple, which defines the stride - the number of pixels the kernel

will slide along, both in terms of width and height.

e P can also be a tuple and it defines the number of added dummy pixels to
artificially increase the input map size for the output map to keep the same
size as the input map (otherwise the output map would be smaller since the

kernels cannot slide outside of the boundary of the input map).

e D (a tuple as well) is the dilation, and it serves the purpose of increasing the
field of view of the kernel (the area of the image it can cover) without adding
more weights to it. Dilation defines the gap that is added both horizontally

and vertically between the weights of the kernel.

We can see an example of the convolution in the Figure 3.10.

Te—— “uﬁ Og
W T

Input Tensor Kernels Feature Maps

Figure 3.10: Example of the convolution operation [35].

The field of view of a single kernel is small, as typically kernels of size 3 x 3,
5x5, or 7x 7 are used [35]. To address this issue and to be able to build up and
capture more complex features in the subsequent layers, the pooling layer is often
added. The pooling layer effectively downsamples the feature maps, commonly by
a factor of two. This allows the next convolution layers to learn more abstract

features that were further apart in the previous feature map. To compensate for
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the information lost during the downsampling, usually a number of independent
kernels is increased for the next convolutions after each pooling layer. During
pooling, a small array slides over the input map and always selects only a single
value from the area it covers, hence decreasing the size of the map. Two pooling

methods are common:
1. Max pooling selects the maximal value from the area it covers, and
2. Average pooling computes the mean from the values it covers.

Example of pooling, both max and average, can be seen in the Figure 3.11.
10 |25 | 34 | 31 O
2 | 43| L 84 | 95

17 | 62 | 43 | 13

od [ B4 | 24 | 50 28.5 [30. 24
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16 | 20| 12 | 95 43.5 | 45.5

Figure 3.11: Example of max and average pooling operations [35].

CNNs are usually organized as repeating layers of convolutions, followed by the
ReLU activation function, and then the pooling layer. The output can then be fed
into another convolution, and a deep CNN can be built using this approach. There
is a rule of thumb [14], where we start with a small number of independent filters
with a small field of view, and then we downsample the image by the factor of two
(to increase the field of view) and double the subsequent number of independent

filters as can be seen in Figure 3.12.
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Figure 3.12: Scale space pyramid of a CNN [14].

In CNNs with very large depth, a concept of a skip connection, first introduced in
the [58], can be used. A skip connection allows the input of a layer to bypass the
convolutions and then be added to their result, as shown in figure 3.13. Also, if we
can represent a series of convolutions with a function ¢(z), then the output with
skip connection included would be given by y = ¢(z) + . This residual learning
architecture can mitigate the problem of vanishing gradient in very deep CNNs

[35].

X
Y
weight layer
]—"(x) ! relu «
weight layer identity

Figure 3.13: A building block of residual network [58|

Other strategies that can improve the performance of CNNs include batch-normalization
layers [59](which are inserted after the convolution layers) and the utilization of
parallel branches [60] (which use different kernel sizes to compute multi-scale fea-

ture maps by concatenating their output maps).
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After the series of convolutions and downsampling, the final compressed feature
representation of the image needs to be flattened (converted into a vector) so it
can serve as an input for the fully connected layer(s), which will then make the
appropriate decision based on the task the model should do. Two methods exist

[35], which we can use to convert the image descriptor into a vector:
1. Reshape the activation maps to form a one-dimensional tensor [57, 27].

2. Use average pooling on the entire activation map, which will collapse the
entire information into a single value and then concatenate these values to
form a vector. For N activation maps, we will get a vector with N elements

[58, 60].

We can see their visual representation in Figure 3.14.
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Figure 3.14: Different flattening strategies [35].

An example of a CNN with all layers is in Figure 3.15. The input image features are
extracted by the convolution layer with four independent 5x5 kernel filters, followed
by the ReLLU activation function and max pooling layer. Then the extracted image
descriptor is flattened into a vector and fed into fully connected layers, which serve

as the classification output head.

35



Chapter 3. Deep Neural Networks

~ s,
///
e 1
! //// II'. | ‘I:'.\\
- Vo W
4 VA
it ﬁ y g Flatten >|| | .::{.I
6 0 I'I I|I I,"I ’/I’
U N [ WS N x1
6 19 ReL.U R [} /- Nelass
Image Convolution Mazx Pooling \‘\\ ."),»'; 64 x 1
Ky Ky = 5 Ky=2 144 % 1
;C= 1 KW =2
OL' =4 SH-SW = 2
Py, Py =0
Sydw =1

Figure 3.15: Example of CNN architecture [35].

Many CNN architectures introduced new concepts in the field of computer vision
and image analysis when they were presented. Considering today’s knowledge and
advancements, some of them might look trivial, but their contribution should not

be overlooked. In the classification task, we can mention:

1. LeNetb [27]: uses a series of convolution and pooling operations to extract
the image features and fully connected layers to classify the input. It was

introduced as a model that should recognize handwritten digits.

2. AlexNet [57]: built on top of the LeNet, utilized a deeper architecture along
with ReLU activation functions, and had immense success at the ImageNet
Large-Scale Visual Recognition Competition. This success brought huge

attention to the CNNs and their potential in image analysis-related tasks.

3. VGGNet [61]: introduced a strategy of expandable convolutional blocks,
where in each block a varying number of convolutions can be used. Each
block is then followed by the max pooling layer. This allowed for tailoring

the network to reflect the complexity of the problem it was assigned to solve.

4. GoogleLeNet [60]: used kernels of varying sizes to extract features from the
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input maps and then concatenated their output maps to create a depth-wise
combined feature. It also used the full-scale average pooling in the final
feature extraction layer to create a one-dimensional tensor. Furthermore, it
utilized auxiliary classifiers in the intermediate layers to boost the gradient
flow. The later version, called Inception Net, introduced more concepts, like

kernel factorization and batch normalization [62].

5. ResNet [58]: introduced a strategy of skip connections to solve the problem

of vanishing gradient in very deep CNNss.

In the detection task, two main architectures were created, namely the Region-
based CNN [63] (further upgraded to the Faster R-CNN and Mask R-CNN [64])
and the You Only Look Once (YOLO) [65].

Both R-CNN and YOLO can localize objects in an image with a bounding box
label. However, sometimes we want to obtain a more precise location of the object,

and this is where segmentation comes into play.

3.5.2 U-Net and Its Variants

To perfectly localize an object in an image, we would like to construct a pixel-
level mask that would mark the pixels where the object is present. We can use
classification for this - each pixel can either be classified as one that does or does
not display a part of the object. Segmentation algorithms have a deep impact and
huge potential for medical imaging and digital pathology, where they can be used

to mark different tissue types, organs, cells, and tumor regions [14].

The limitation of full CNN architectures is the inability to preserve the spatial
information after the initial feature-extracting layers [14]. This issue is addressed

in a new type of architecture, the encoder-decoder architecture. This architec-
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tural type, also known as the autoencoders or auto-associative networks, was first

introduced in the [66]. Its visual representation is shown in Figure 3.16.
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Figure 3.16: Example of the autoencoder architecture [35].

It consists of two main parts:

1. The encoder part, which is responsible for encoding the input image and
extracting the most descriptive features, compressing them, and reducing

the redundancy, and

2. The decoder part is responsible for reconstructing the original input image

from the compressed image descriptor.

The loss function computes the difference between the original input image and
the image constructed by the decoder. If the decoder is able to create an image
that looks very similar to the original, it means that the hidden representation of
the image extracted by the encoder is credible enough. Then the decoder part can
be removed and instead, a classification, segmentation, or localization module can

be attached and exploit the features learned by the encoder [35].

In segmentation tasks, a simple change is added to the decoder part. Instead
of generating the original image, it is trained to create the segmentation mask,
where each pixel has a probability of belonging to a certain class. This computed
probability distribution mask is used along with the original mask in the loss

function to compute their difference and guide the training.
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When the activation maps are downscaled in the encoder using operations such
as max pooling, where only a single value is picked, we need a correct mechanism
to reconstruct the original spatial position of that value during the upscaling of
the maps. This can be achieved by remembering and forwarding the indices of the

chosen value, as it was first introduced in the SegNet architecture [67].

One of the most widely adopted and impacting architectures is the U-Net model
[21]. U-Net was designed as a model for medical image segmentation tasks and
achieved great success in doing so [14, 68]. Its architecture can be seen in Figure

3.17.
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Figure 3.17: U-Net architecture [68].

Similarly to autoencoders, it has two main parts, the encoder and decoder. The
encoder works as a classical CNN feature extractor, with convolutions, ReLLU ac-
tivation functions, and max pooling. In each layer, there are two convolutions

(kernel size is 3x 3), followed by the ReLLU, and the resulting activation maps are
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downsampled by a factor of two using the max pooling layer (with 2x2 matrix).
Before the downsampling happens, the copy of the activation maps is sent to the
decoder (skip connections). Every next block doubles the number of channels.
This is repeated four times until we reach the bottleneck, where we again perform
the convolutions with ReLLU, but omit the downscaling. At this point, the features
of the input image are in their most compressed form. Output from the bottle-
neck is then sent to the decoder part. Next, the decoder part uses up-convolutions
(kernel size is 2 x 2), to expand the feature maps (double their size) and halve
the number of channels. Particularly, these up-convolutions are distinctive when
comparing U-Net to other architectures [68]. The activation map is upscaled by
up-convolution, and then the activation maps, previously sent from the encoder,
are concatenated with it. The concatenation is a required step since the border
pixels are lost in every convolution (the convolutions do not use padding), and
also to reintroduce some information that might be lost during the downsampling.
Then again, two 3 x 3 convolutions with ReLLU are applied. This is also repeated
four times, to reflect the encoder blocks. This approach can be visually drawn into
a U-shape-like architecture, from which the U-Net derived its name. Finally, after
the last decoder block, the 1x1 convolution is used to get the desired number of

channels.

Since the original U-Net, many different variants of it have been introduced [68|.

To list a few examples:

e 3D U-Net [69]: works as a classical U-Net but was modified in a way that it
can segment 3-dimensional data. Every 2D operation (2D convolution, 2D
pooling, 2D up-convolution) was replaced by its corresponding 3D equiva-

lents. It can be useful in medical images that utilize 3D space, like MRI and

CT.

40



Chapter 3. Deep Neural Networks

e Attention U-Net [70]: utilizes the attention gate to draw the attention of
the network to the important parts of the image. These attention gates are
inserted in a place where the concatenation of encoder feature maps and
decoder feature maps should occur, as can be seen in Figure 3.18. Before
this concatenation happens, both sets of feature maps are run through the
attention gate, where a series of operations is performed. These operations
are visualized in Figure 3.19. Firstly both sets are run through a 1x1x1
convolution to align their dimensions and then are added together. Then
they pass through the ReLLU activation function, 1x1x1 convolution layer to
reduce their depth to 1, the sigmoid activation function to squeeze the values
between 0 and 1, and an optional resampler to correctly align the spatial
dimensions. This results in an attention map containing values between 0
and 1 and with a depth of 1. This attention map is then broadcast and
multiplied by the feature maps from the encoder - this produces the final
output of the attention gate, which is then concatenated with the feature

maps upsampled by the decoder.
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Figure 3.18: U-Net architecture with added attention gates [70].
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Figure 3.19: Additive attention gates [70].

e Residual U-Net is inspired by the [58] and uses the skip connections within
each block to help the gradient flow and address the problem of vanishing

gradient.

Many more U-Net variants exist that we do not explain further in this work, for
example, the Inception U-Net, Recurrent U-Net, Dense U-Net, Adversarial U-Net,
Ensemble U-Net, and U-Net™", each showing potential in various medical imaging

domains, from CT and MRI scans to radiology, cytology, and histology [68].

3.5.3 Vision Transformers

CNNs were for a long time considered the dominating architectural pattern in
deep learning tasks related to visual data, similar to the RNNs being dominant
in sequential data processing, such as natural language processing (NLP) [71].
When the Transformer architecture was proposed in [71], things began to change.
Nowadays, transformer-based architecture is prevalent in the NLP field [55], and
with the introduction of Vision Transformer in [54], it seems that transformers

can be applied in computer vision as well and potentially compete with CNNs
2]

Vision Transformers (ViTs) build on the success of Transformers in NLP tasks

[54, 55]. Transformers utilize the attention mechanism that is able to capture a
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global context of the input data and is not limited by the distance of the pixels,

as was the case with CNNs [55]. ViTs took advantage of the standard transformer

encoder part, which can be seen in Figure 3.20. The encoder connects multiple

attention blocks to make use of the global image context.
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Figure 3.20: Vision transformer architecture for classification [55].

Below, we briefly mention the ViT algorithm as described in [55]:

1. The input image is split into patches with fixed sizes, for example, authors

in [54] used a patch size of 16 x 16 pixels

2. Image patches are converted by flattening into the vector space

3. To reduce the dimensions of the resulting embeddings, vectorized patches

are run through a trainable linear layer

4. Since transformers are not aware of the spatial information, positional infor-

mation is added to each vectorized embedding

5. This sequence is then fed into the encoder

6. Since ViTs require a huge amount of data to perform well, it is a great idea

to pre-train the ViT on a large dataset and then fine-tune it to the specific

task.
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7. In classification tasks, an extra embedding is added, which will be learned

during training - the class embedding.

The self-attention mechanism and multi-head self-attention are the key compo-
nents of ViT’s success. The self-attention mechanism allows the model to figure
out the importance of a patch embedding with respect to all the other patch
embeddings of the image. The multi-head self-attention is composed of multi-
ple self-attention units (also called heads), where each head is independent of the
other heads. In the end, their outputs are stacked onto one another and passed
through another linear layer. Skip connections facilitate better gradient flow and
are added after the multi-head attention unit and before the final output. The
produced output can serve as input to another attention block, hence a deep net-
work can be constructed. This allows the model to capture complex relationships

and dependencies across the input embeddings [55].

Vision Transformers have achieved great success along with CNNs in many ap-
plications of the medical imaging domain in tasks such as medical image classi-
fication, segmentation, restoration, synthesis, medical object detection, and more

[55].
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Related Work

Precise manual cell annotation on huge WSI slides is a laborious task that needs to
be performed by skilled expert pathologists. There exists a large number of models
trained on the pixel-level masks for cell segmentation, which perform remarkably
well. In the field of weak supervision for cell segmentation, a number of studies
focus either on weak supervision in the form of point annotations in H&E slides or
weak supervision with bounding box annotations of cells in microscopic imaging or
DNA cytometry. However, we did not find many studies focusing on weakly anno-
tated cell segmentation, especially from the histopathological H&E-stained slides,
when annotations were presented in the form of bounding boxes. Furthermore,
our task is specific in the fact that we are not interested in the segmentation of all
cell nuclei, but only in segmenting nuclei of lymphocytes. Therefore, to compre-
hensively review the current state of research, we will first examine studies that
utilize bounding box cell annotations in histology. Subsequently, we will explore
selected papers focusing on cell annotations using bounding boxes in modalities
other than histology, as well as those addressing weakly supervised cell segmenta-

tion in histology employing point annotations of cell nuclei.
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4.1 Guided Prompting in SAM for Weakly Super-
vised Cell Segmentation in Histopathological
Images [72]

The authors of this work explore the applicability of the Segment Anything Model
(SAM), using guided prompting, to the cell segmentation task from histology im-
age slides, where the cells are only annotated using bounding box labels. Their
results outperformed other models for weakly supervised segmentation by a huge

margin.

Three different datasets were used, and since each dataset was annotated with
pixel-level masks, these were converted into the bounding boxes for the purpose of
this study and the segmentation mask labels were not used during the training. If
the dataset also contained class labels for individual cell nuclei, these labels were
not used as this study is not concerned with cell classification. The datasets used

were:

1. ConSep dataset, containing 41 H&E stained WSIs, each having 1000 x 1000
pixels. The images are of single cancer and colorectal adenocarcinoma. To-
gether, there are 24,319 annotated cells, split into three different categories
(inflammatory, epithelial, spindle). For this work, each image was split into
four patches, each patch having 500 x 500 pixels. Then 98 of these patches

were used for training, 10 for validation, and 56 for testing.

2. MoNuSeg is a multi-organ cell segmentation dataset containing 51 H&E-
stained images of different organ tissue (stomach, bladder, breast, liver, kid-
ney, prostate, colon). Together, the images have 28,846 annotated cell nuclei.
Similarly to the ConSep, each 1000 x 1000 image is split into four 500 x 500
patches, 133 of them used for training, 15 for validation, and 56 for testing.
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3. TNBC dataset of 50 512 x 512 WSIs of triple-negative breast cancer tissue.
In total, it contains 4,022 annotated cell nuclei. 34 images were used for

training, 5 for validation, and 11 for testing.

Two main approaches were used. During the first, called D-SAM, a YOLO ob-
ject detector was trained to generate the bounding boxes of cells, using a sum of
three losses (objectness loss - L, classification loss - Ly, and localization loss
- Lio¢). During the inference (the testing, at the time of prediction) the image
along with bounding boxes predicted by the detector model were embedded and
fed to the SAM to predict the segmentation masks (with bounding box predicted
labels as guiding prompts). The second approach, called SAM-S, used SAM as a
pseudo-label generator. Both images and corresponding ground truth labels were
embedded and fed to the SAM and its output segmentation masks were then used
as pseudo-labels to train a separate segmentation model with combined Dice loss

(Laice) and binary cross entropy (Lpcp). Both approaches can be seen in Figure

4.1.

. Prompt
Detection Encoder

Image
Encoder

Segmentation
Model

Figure 4.1: Workflows with SAM [55].

In addition to these, three more strategies were used, namely:
1. SAM-W, where SAM was fine-tuned using weakly supervised losses

2. SAM-M, where the mask generated by the SAM-S approach is used as a
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guiding prompt for another SAM prediction

3. SAM-ILP, where an Integer Linear Programming is used as a post-processing
technique to align the results obtained from both the D-SAM and SAM-S

approaches

Different prompting methods were used, and also a no-prompting case, where only
an image was provided, was used. In the 1P-kN scenarios, one positive and &
negative points were used for each bounding box, where the positive point was
the center of the bounding box, and negative points were outside of the bounding
box and were not part of any other bounding box. All of the prompting methods
are summarized in Figure 4.2, where we can see that the bounding box prompts

achieved the best Dice scores in most cases.

Prompt Type ConSep MoNuSeg TNBC

No prompt 31.13 38.96 37.67
1P-ON 37.52 74.16 73.23
1P-4N 56.62 78.54 81.52
1P-8N 61.81 78.00 81.65
1P-16N 59.18 72.97 79.11
Box 80.00 79.87 82.80
Box-1P 79.31 79.72 83.24
Box-1P-8N 73.39 77.73 81.89
Mask 31.65 35.16 32.78
Mask-Box 80.00 79.89 82.12

Figure 4.2: Different prompting methods used for SAM.

Mean average precision (mAP), precision, and recall were used as evaluation met-
rics for object detection, and the Dice coefficient was used as an evaluation metric

for segmentation.

Two non-SAM models were used as baselines for comparison, the BBTP and BB-
WSIS, both based on the Residual U-Net architecture, trained for 50 epochs and
a learning rate of 0.0001. Yolov8x was used as the object detector, trained for 300

epochs with early stopping, batch size 32, and decreasing learning rate (starting at
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0.01 and decreasing by a factor of 10). The CaraNet was used as the segmentation
model. It uses reverse axial attention and has great performance for small objects.
It was trained for 200 epochs, with Adam optimizer, learning rate 0.0001, and
early stopping. The experiments were carried out using NVIDIA-RTX 5000 and
Tesla A100 GPUs.

From the results displaying the Dice scores shown in Figure 4.3, we can see that
both SAM-S and D-SAM outperformed the baseline models, and the overall best
results were achieved by the SAM-ILP model.

Model ConSep MoNuSeg TNBC
BBTP [14] 6240 7234 68.53
BB-WSIS[43] 66.00 72.81 70.37
“SAM-S 79.86 7938  80.66
D-SAM 80.00  79.87 82.86
SAM-M 80.50  80.07 82.26

SAM-W (MIL) [14] 72.27 73.58 79.64
SAM-W (BoxInst) [38] 70.25 73.05 79.43

Figure 4.3: Comparison of used models with Dice scores.

4.2 A pathomic approach for tumor-infiltrating lym-
phocytes classification on breast cancer digital
pathology images [73]

The second study aimed to classify TILs in H&E-stained images of breast cancer
based on a handcrafted set of features, to achieve a better model explainability.
Even though the main focus of this study is different from our goals, it is relevant

and interesting for us for two reasons:

1. it uses the same TIGER dataset [15] as we do, and
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2. it uses a watershed-based method to segment cell nuclei within the tissue as

a preprocessing step.

The dataset contains 195 WSIs scanned at three different institutes. They contain
region of interest (ROI) annotations of both tissue types and TILs. TILs were
annotated using point annotations and a bounding box of 8x8 pm was constructed

and centered on the point.

In the preprocessing step, the authors applied a stain normalization proposed in
[74] and watershed-based cell nuclei segmentation. The authors decided to use this
method for its simplicity, speed, and easy parameter adjustments and fine-tuning.
The method used mathematical operations. They used the implementation from

the QuPath digital pathology tool with the following set of parameters:

e The setup parameter: hematoxylin OD for the detection image, pixel size of

0.5pm

e Nucleus parameters: background radius 8pm; median filter radius Opm; o =

1.5pm; minimum cell area 10pm?; maximum cell area 400pm?
e Intensity parameters: threshold 0.1; maximum background intensity 2

The resulting segmentation masks were verified by an expert microscopist. This
method was applied to 1037 ROIs, where 92,141 cell nuclei were segmented; 20,111
of them were TILs.

The study further worked on the TIL/non-TIL classification task and identifying
the relevant features, but since this is not our primary interest, we only briefly
describe the methodology and results. The study analyzed 71 features split into
five groups (6 Fourier Shape Descriptors features - FSD, 8 gradient features, 26
Haralick features, 12 intensity-based features, 19 morphometry features). Out

of them, 21 were selected as pathomic features. These should best describe the
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properties of TILs. Then, five different classification models (Random-Forest,
Decision Tree, Linear Discriminant Analysis, K-Nearest Neighbors, Multi-layer
Perceptron) with three different resampling techniques (none, synthetic minority
oversampling technique - SMOTE, Down) were trained using these features. The
AUC (area under the ROC curve), accuracy, precision, sensitivity, specificity, and
F1-score were used as evaluation metrics. The Random-Forest classifier achieved
the best result with an AUC of 0.86, where the resampling technique did not make

a significant difference.

4.3 DDTNet: A dense dual-task network for tumor-
infiltrating lymphocyte detection and segmen-

tation in histopathological images of breast can-
cer |75]

The third work introduces a dense dual-task network (DDTN), which is used both
for TIL detection and segmentation in breast cancer H&E-stained images using
only point annotations. These two modules share the same backbone, which allows
them to learn from one another and promote each other. The ultimate goal of this

network is to perform a precise TIL instance segmentation.

The training and testing workflows of the network can be seen in Figures 4.4 and
4.5. During the training phase, the network produces three output types for cells -
bounding boxes, cell contours, and cell masks. The separate semi-automatic tool is
used to create segmentation masks, from which bounding boxes and cell contours
are derived. These are then used to guide the training of the model. During the

inference phase, a network is used to produce the aforementioned three types of
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output again. Cell masks and contours are then unified to create cell segmentation
masks, and these are further merged with the detection bounding boxes to provide
the final output.
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Figure 4.5: DDTN workflow during inference.

A detailed architecture of the DDTN model and each of its key components, like the

backbone model, segmentation and detection modules, and feature fusion module,
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can be seen in Figure 4.6.
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Figure 4.6: DDTN architecture.

The study uses two publicly available datasets and creates a new one with the use
of their semi-automatic mask generator, which the authors called TILAnno. The

datasets used were:

e BCa-lym dataset: containing 100 H&E stained ROIs of size 100x 100 pixels.

3,064 cells with point annotations are present on them.

e Post-NAT-BRCA dataset: contains H&E-stained WSIs with manual anno-
tations of different cell types. For this study, 29 WSIs were selected and
740 ROI patches of size 100x 100 pixels were used, together containing 4,488
dot-annotated lymphocytes.

e TCGA-lym introduced dataset: authors used 15 H&E stained WSIs from
The Cancer Genome Atlas (TCGA), extracted ROIs of size 1600x 1600 and
let two junior pathologists annotate the lymphocyte centers and then a single

expert refined them. In total, 5,029 cells were annotated. For the training,
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each ROI was divided into 64 200 x 200 patches.

Each dataset originally contained dot annotations of lymphocytes. The authors
used the TILAnno tool to generate pixel-level masks, contours, and bounding

boxes.

During the training, the input images were first resized to 320 x 320 pixels, and
different augmentation techniques were used (mirror, flip, light noise, brightness,
and color conversion). ResNet101 was used as a backbone network, and it was
pre-trained on the ImageNet dataset. The training hyperparameters were set in
the following fashion: 1000 epochs with stochastic gradient descent, batch size of
4, an initial learning rate of 0.0001, and decreased by a factor of 10 at the 500th

and 750th epochs; weight decay was set to 0.01 and momentum to 0.9.

Evaluation metrics were split for detection and segmentation tasks. In the lympho-
cyte segmentation task, the Dice score, Aggregated Jaccard Index, and panoptic
quality were used. In the lymphocyte detection task, the precision, recall, and
F1-score were used, where the truthfulness of the positivity of a sample was deter-
mined by the ToU threshold set to 0.5 in case of TP/FP and FN if the bounding

box does not intersect any ground truth bounding box.

For the evaluation of the TILAnno tool, the authors compared it to two other tools
used for weak cell segmentation, namely QuPath and Cell Profiler. They ran all
three tools on all three datasets, then let two experts manually label lymphocyte
boundaries on 20 randomly selected images, which were used for evaluation with
expert labels as ground truth. The TILAnno tool (Ours) seemed to outperform
the baseline tools by a great margin in the Dice score, as can be seen in Figure
4.7. The study further analyzed the model performance of their proposed solution
with other baseline models during inference, and from Figure 4.8 we can see that

their model outperformed the in all metrics except time.
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Method BCa-lym Post-NAT-BRCA TCGA-lym
Cell Profiler (Carpenter etal., 2006) 0.617 0.566 0.747
QuPath (Bankhead etal., 2017) 0.640 0.659 0.822
Ours 0.982 0.937 0.926

Figure 4.7: Comparison of TILAnno and baseline tools.

Method BCa-lym Post-NAT-BRCA TCGA-lym

F1 Dice PQ Time F1 Dice PQ Time F1 Dice PQ Time

DCAN  0.573 0.753 0.437 0.0052 0.694 0.737 0.539 0.0046 0.501 0.666 0.381 0.0059
(Chen
etal.,
2016)

U-Net 0.656 0.831 0.550 0.0081 0.646 0.779 0.561 0.0076 0.470 0.701 0.391 0.0065
(Ronne

berger

etal.,

2015)

HoVer- 0.812 0.845 0.711 0.7669 0.793 0.812 0.703 0.7617 0.691 0.768 0.617 0.7611
Net

Graham

etal.

(2019)

ANCIS 0.854 0.807 0.681 0.2159 0.845 0.787 0.690 0.0907 0.720 0.702 0.518 0.0847
(Yi

etal.,

2019b)

Ours 0.885 0.845 0.731 0.0674 0.892 0.846 0.782 0.0662 0.793 0.788 0.635 0.0647

Figure 4.8: Comparison of DDTN and baseline models.

Moreover, the study also evaluated the model’s ability to generalize by training
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it only on the BCA-lym and Post-NAT-BRCA datasets and evaluating it on the
TCGA-lym dataset. The results are summarized in Figure 4.9, where we can

see that their model again outperformed the existing baselines in all used met-

rics.
Method BCa-lym’ + Post-NAT-
BCa-lym' Post-NAT-BRCA' BRCA!
F1 Dice PQ F1 Dice PQ F1 Dice PQ

DCAN (Chen etal,, 2016)  0.301 0.485 0.203 0301 0.581 0.226 0457 0549 0.341

U-Net (Ronneberger etal, 0.309 0.446 0251 0.380 0.605 0313 0443 0615 0385
2015)

HoVer-Net Graham etal. ~ 0.517 0.551 0427 0573 0.633 0489 0592 0643 0.513
(2019)

ANCIS (Yi etal., 2019b) 0.551 0470 0.284 0.623 0.582 0405 0.634 0562 0421

Ours 0.600 0.568 0.459 0.695 0.691 0.514 0.739 0.717 0.577

Figure 4.9: Comparison of DDTN and baseline models in generalization.

4.4 Nuclei segmentation with point annotations from
pathology images via self-supervised learning
and co-training [76]

In the fourth work. The authors present a self-supervised approach that gen-
erates segmentation masks from point annotations of cell nuclei in H&E-stained

images.

Two datasets were used, and since each dataset was annotated using pixel-level
annotations, these were converted to point annotations that were set approximately

to the center of each mask. The datasets were:
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e MoNuSeg dataset, which we already mentioned earlier in this chapter. 24

images were used for training, 6 for validation, and 14 for testing.

e CPM dataset, containing 32 500 x 500 or 600 x 600 H&E stained images of
four tumor types. 20 images were used for training, 4 for validation, and 8

for testing.

All the images for training were cropped to 250x250 patches with 125-pixel overlap
for training - these are then randomly cropped further into 224 x 224 sub-patches,
rotated, flipped, and zoomed. The images used for testing are cropped to 224x224
patches with 80-pixel overlap.

Their method contains three modules:

1. Segmentation of nuclei with rough (not very precise) labels. Initial pixel-level
masks are generated as follows: From point annotations using a Voronoi di-
agram and k-means clustering the Voronoi labels (a division of the image
into convex polygons) and cluster labels (3 clusters in total - nuclei, back-
ground, ignored area) are generated. The H-component image is separated
from the original H&E-stained image. Then, the Residual U-Net network
is trained using the Voronoi and cluster labels with cross-entropy loss to

generate coarse pixel-level masks.

2. Next in the co-training strategy, two segmentation networks are trained,
where they supervise each other. The training data is split into two parts,
and each network is trained with one part. Apart from the two mentioned
labels, each of them also uses pseudo-labels generated by the other network,
which are stabilized using exponential moving average (EMA), where the
averaged predicted labels are used to label the ignored area of the cluster

label. The co-training loss is given by the Kullback-Leibler divergence.
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3. The self-supervised representation learning employs two U-Nets in sequential
order, where the first U-Net computes the nuclei probability map (using the
H-component images) and the second then reconstructs the colorized image

from these maps.

To integrate all of these modules, a final model is proposed. It has two networks,
which are co-trained using Voronoi, cluster, and each other’s labels (with the
EMA stabilization) and colorization loss. Each network consists of two U-Nets,
the segmentation U-Net and the colorization U-Net. The ResNet-34 is used as a
backbone network, pre-trained on the ImageNet dataset. The training hyperpa-
rameters were set as follows: initial learning rate of 0.001 reduced by a factor of 10
every 30 epochs, Adam optimizer, and weight decay set to 0.0005. The colorizing
network part is discarded during inference, and only the segmentation part is used.

The full architecture can be seen in Figure 4.10.

o |

: i Segmentation Net
: o

i ot
+H-component |

|
Color prediction

I Encoder Feature | Decoder Feature > Skip connection

=~ 2 L Down-sample _1 Up-sample Conv-leaky ReLU
" 7
NS

Pseudo Label

;' Pseudo Label Generation
Prediction y

Cluster label ¢

Segmentation Net —>

Colorization Net

Color prediction

Exponential
Moving Average

Leotorz

Figure 4.10: The architecture of the proposed model.

Pixel accuracy, Fl-score, Dice coefficient, Aggregated Jaccard Index, Detection

Quality (DQ), Segmentation Quality (SQ), and Panoptic Quality (PQ) are used
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as the evaluation metrics. From Figure 4.11 we can see that the proposed network
achieved better results on both datasets in almost all metrics when compared to
other state-of-the-art models trained for weakly supervised nuclei segmentation

with the same set of hyperparameters.

Model MoNuSeg CPM

Ace F1 Dice,,,  AJl DQ sQ PQ Acc F1 Dice,, Al DQ sQ PQ
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Yoo et al. (2019) 86.51 7211 5668  20.03 4397 7221  31.86 9050  79.81 7246  49.42  61.04 73.63 4510

Tian et al. (2020) 88.01 71.47 63.96 40.51 50.67 67.19 34.12 87.87 71.74 64.39 42.11 42.86 63.03 27.06

3 91.19 77.56 72.51 51.69 68.82 72.50 49.97 89.96 75.87 70.28 49.40 59.49 70.87 42.68
91.52 76.76 73.24 54.32 69.72 71.28 49.84 89.90 76.56 7117 50.91 64.10 70.66 45.69
Chamanzar a ie (2020) 91.04 74.18 71.70 53.69 69.40 69.84 48.75 88.57 70.69 66.44 45.92 57.06 67.80 39.20
Lee and Jeong (2020) 91.13 77.05 73.44 54.20 72.03 71.80 51.78 89.85 75.80 70.82 50.26 65.37 69.75 45.99

Ours 91.44 77.64 74.41 56.20 73.27 72.48 53.19 91.01 79.97 7373 51.69 68.42 7218 49.66

Figure 4.11: The architecture of the proposed model.

4.5 Weakly Supervised Deep Nuclei Segmentation
With Sparsely Annotated Bounding Boxes for
DINNA Image Cytometry [77]

The last work focuses on segmenting cell nuclei in DNA image cytometry from

bounding box annotations using a teacher-student network setup.
Two datasets were used:

e DNA-ICM database, contains 23,485 images of cervical cancer screening
stained with feulgen and eosin. Each image has 4096 x 2816 pixels. To-
gether, the dataset contains more than 1M cell nuclei. 18,266 images were
selected for training and validation, and 5,219 for testing. The authors used
a semi-automated approach to get pixel-level masks for the test set. For the
training and validation sets, they initially generated the pixel-level masks

with traditional methods and then let experts refine them.
e ISBI14 dataset, containing 16 real and 945 synthetic images of cervical cy-
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tology. 8 real and 45 synthetic images were used for training, while the rest

were used for testing.

Firstly, pseudo-masks are generated for each available bounding box by cropping
out the box area and applying traditional segmentation methods, namely Otsu, K-
means, and GrabCut. These initial pseudo-labels, along with the bounding boxes,
are then used to train the teacher model. It produces pseudo-labels in the form
of refined masks for ground truth nuclei labels (bounding boxes), and bounding
boxes and masks for unlabeled nuclei. The student model then uses the ground
truth labels and teacher-generated pseudo labels to further optimize the loss. The
loss, combining the supervised, weakly supervised, and unsupervised losses, is used

for the training of the student model.

Both the teacher and student models share the ResNet-50 with a feature pyramid
network (with discarded level P6) as a backbone. The backbone is initialized with
weights pre-trained on the ImageNet dataset. It is used to extract ROI features.
Then both have the same architecture, the Mask R-CNN, which is, in total, trained
for 32,000 iterations. The first 16,000 iterations are used to train the teacher
model. Then the pseudo-labels generated by it are used for training the student
model. The student model is initialized with the weights of the teacher model. The
architecture can be seen in Figure 4.12. The training hyperparameters were set
as follows: weight decay of 0.0001; momentum of 0.9; initial learning rate of 0.01,

and decreased by a factor of 10 after the 20000th and 27000th iterations.
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Figure 4.12: The architecture of the teacher-student model.

Precision, recall, pixel-level IoU, and Dice coefficient were used as evaluation met-
rics for nuclei segmentation. For cell detection, the average precision and recall

over different IoU thresholds were used.

The comparison of results compared to other state-of-the-art weakly supervised
methods can be seen in Figures 4.13 for segmentation and 4.14 for detection on
the DNA-ICM dataset, where it achieved the best results compared to the other
methods in all metrics but recall. Figure 4.15 displays results comparison for
segmentation on the ISBI14 dataset. Since this dataset is fully annotated with
pixel-level masks, the authors used these (either 100% of them or 50% of them)
to generate the pseudo-labels. The model trained on this dataset was trained only
for 100 epochs in total, 50 of which were for the training of the teacher model.
Again, their solution seemed superior in most of the metrics when compared to

the other models.
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method ToU Dice Precison Recall
WeaklySegPartialPoints [17] 6.7 12.6 104 159
C2FNet [18] 34 6.6 34 100.0
Scribble2Label [20] 53.2 69.4 61.3 80.0
Ours 57.0 72.6 73.8 714

Figure 4.13: The comparison of results for segmentation on the DNA-ICM dataset.

method AP APs5g AP AR0
RetinaNet [40] 61.8 81.8 83.5 70.2
YOLOV3 (DarkNet-53) [41] 63.1 84.6 84.4 70.6
FCOS [44] 60.8 80.3 82.2 70.6
Reppoints [45] 68.1 86.4 89.5 73.8
ATSS [46] 64.2 81.8 84.8 73.2
Ours 67.5 86.2 88.5 733

Figure 4.14: The comparison of results for detection on the DNA-ICM dataset.

method annotation ToU Dice P R

WeaklySegPartialPoints [17] 100% 14.1 248 14.2 98.3
C2FNet [18] 100% 55.6 71.5 58.3 92.5
Scribble2Label [20] 100% 69.8 82.2 70.9 979
Ours 100% 72.7 84.2 95.5 75.2
WeaklySegPartialPoints [17] 50% 6.7 12.6 6.7 99.9
C2FNet (18] 50% 74 13.8 99.9 74
Scribble2Label [20] 50% 69.5 82.0 722 95.0
Ours 50% 70.0 824 72.0 96.2

Figure 4.15: The comparison of results for segmentation on the ISBI14 dataset.
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Our Work

5.1 Overview

This work presents a method dealing with challenges where we have a fully an-
notated dataset, however, very small in size (TNBC dataset [78]), and a large
dataset but weakly annotated (TIGER dataset [15]). We aim to overcome these
challenges by implementing a hybrid approach for the semantic segmentation of
lymphocyte cells. The overview of the whole approach is displayed in Figure 5.1.
The hybrid method consists of a preprocessing module, which prepares data for
training and evaluation; then the pseudo-mask creating module, which creates the
pseudo-masks for the TIGER dataset images. The resulting image patches are
then used for the training of the deep learning segmentation model, which we

describe in Section 5.3.
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TIGER bounding box
annotations

Pseudo-masks creation for TIGER

Y

TIGER TIGER
TIGER image sources pseudo-masks
Preprocessing

TIGER patches
(images and pseudo-masks)

Y

TNBC patches
(images and masks)

Figure 5.1: The overview of our hybrid approach for semantic segmentation.

Firstly, we try to train and validate a model on the small dataset itself. Then
we use preprocessing and computer vision techniques to generate various pseudo-
mask sets out of bounding-box annotations for the weakly annotated dataset and
train a model on it, which is again validated on the small, fully annotated dataset.
Then we try to identify and select the best fusing strategy for the mask sets, to
utilize different abilities of the sets to capture the cell region. Next, we select the
best model (with the most successful mask-fusing strategy) and fine-tune it using
a portion of the data in the fully annotated dataset. We evaluate each of these

experiments with the Dice coefficient and IoU. We start with the fundamental part

- the description of the datasets used.
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5.2 Datasets

TIGER In our work, we use the Tumor Infiltrating Lymphocytes in Breast
Cancer - TIGER - dataset, which was released with the challenge under the same
name on the Grand Challenge platform [15]. It contains H&E-stained WSIs of
HER2-positive and TNBC breast cancer tissues obtained by core needle biopsies
or surgical resections. The images were scanned using 20x magnification. The
dataset is released in three formats. We work with the one called WSIROIS. The

WSIs come from three different institutions:

1. TCGA (151 WSIs) dataset, which contains images of TNBC from the TCGA-
BRCA archive, annotations, and magnification, was adopted to be in line

with those used further.

2. RUMC (26 WSIs) images of both TNBC and HER2-positive breast can-
cer obtained from Radboud University Medical Center in the Netherlands,
annotated by a panel of board-certified pathologists.

3. JB (18 WSIs) images of both TNBC and HER2-positive breast cancer ob-
tained from Jules Bordet Institute in Belgium, annotated by a panel of board-

certified pathologists.

The RUMC and JB WSIs contain 3 annotated ROIs with a size of approximately
500 x 500 pm. The WSIs obtained from TCGA are more specific. This dataset
was created by merging two other datasets: the BCSS (151 WSIs) and the NuCLS
(124 WSIs). The NuCLS is a subset of the BCSS dataset. In the BCSS dataset,
the tissue in a single large ROI is annotated, but no cells are annotated. In the
NuCLS, a variable number of smaller ROIs are selected within the large ROI
(same large ROI as in the BCSS), and these are densely annotated for multiple

cell types. Annotations are adapted to match the other used annotations, as was
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mentioned.
The WSIROIS format contains:

e WSI level annotations, wherein each WSI contains manual annotations of
ROIs. Different tissue types are annotated with polygons, namely: invasive
tumor, tumor-associated stroma, in-situ tumor, healthy glands, necrosis not
in-situ, inflamed stroma, and rest. Most ROIs have also annotated plasma
cells and lymphocytes. These were annotated using point annotations and
then a bounding box was constructed and centered on the point of annotation
with the size of 6 x6 pm, 8 x8 pm, or 9x9 pm. Annotations for WSIs are

released in XML format and also as a multi-resolution TIF image.

e ROI level annotations, where authors cropped the ROIs from WSIs and
stored them as PNG files. Tissue type annotations are released as PNG
images, containing pixel-level masks, and cell annotations are released in
the COCO format - a JSON file containing file paths (the PNG images of
ROIs) with IDs and metadata and corresponding annotations of bounding

box position and size.

We further work with the part of the dataset that has ROI-level annotations.
This part of the dataset consists of 1,879 (1,744 from TCGA, 81 from RUMC, 54
from JB) ROIs cropped from 44 (124 from TCGA, 26 from RUMC, 18 from JB).
Together, they contain 30,524 annotated cell nuclei.

An example of an image and its bounding box labels can be seen in Figure 5.2.
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(a) Without annotations (b) With annotations

Figure 5.2: Example of TIGER image without and with annotations of TILs [15].

TNBC Triple Negative Breast Cancer Nuclei Segmentation dataset [16], is an
open dataset consisting of 11 patients with breast cancer, with varying numbers
of images for each patient, provided regions of interest (ROIs) in PNGs. To-
gether, it has 50 annotated ROIs of size 512x512, scanned with 40x magnification.
Specifically, we use the extended version of this dataset [78], where annotations of
cell classes were added. Each image has a corresponding pixel mask, where each
pixel is labeled by the class it represents. There are 11 different cell classes, plus
background and unknown classes. We also note that this extended version of the
dataset provides images of brain tissue, but since it is not part of our work, we
only work with the images of breast cancer. An example image with its ground
truth mask, already relabeled so only lymphocytes are annotated, can be seen in

Figure 5.3.
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PATCE S 2 s LA W
AT

(c) Image with mask overlay

Figure 5.3: Example of TNBC image, mask, and overlay, where TILs are annotated
[78].

5.3 Deep Learning Model

5.3.1 Architecture

As a deep learning model for semantic segmentation, we employ the U-Net archi-
tecture. U-Net is a powerful architecture, and as we mentioned in Chapter 3, in
Section 3.5, it is also widely used in the medical imaging domain. Specifically, we
use the ResNet-34 encoder as the U-Net’s backbone, which is already pretrained
on the ImageNet dataset. This choice was based on the fact that residual blocks
further improve the U-Net’s ability to learn, as we continue to write in Section 3.5
of Chapter 3. In the state-of-the-art, which we present in Chapter 4, authors in
[75, 77| also use ResNet architectures, and specifically, ResNet-34 is used in [76].
The inspiration to initialize the encoder with weights pretrained on the ImageNet
dataset came from the state-of-the-art works as well, where a similar approach
was used in |75, 76, 77]. The full architecture of the model can be seen in Figure

0.4.
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Figure 5.4: The architecture of our model.

This model is being used in all our experiments as the segmentation model. The
training setup and model’s hyperparameters remain the same in every experiment

as well.

5.3.2 Input and Output Specifications

The input for the model is an image of size 128 x 128 pixels in a 3 - RGB - channel
space. The model’s segmentation head produces a binary mask of size 128 x 128
pixels and a depth of 1. The output mask is then run through the sigmoid function
to squeeze the values between 0 and 1. A threshold of 0.5 is applied to this mask
as pixels with a value less than 0.5 are predicted background and labeled with a
number 0, and pixels with a value greater than or equal to 0.5 are predicted TILs

and labeled with a number 1.
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5.3.3 Loss Function

The loss function used during training is the Dice Loss function. This loss function
is the preferred function to be used in the segmentation of objects and is also

frequently used in the medical imaging domain, as described in [39].

5.3.4 Optimization

We used the Adam optimizer, and the initial learning rate was set to 0.001, and
it was reduced every 5 epochs by a factor of 0.1. Early stopping was also used,
where the patience was set to 10 checks - if the validation loss was not improved
during the training and it got worse at least on 10 checks, the training stopped
to prevent overfitting. Checks were performed during every validation run, after

every epoch.

5.3.5 Training

Every training was set to run for 100 epochs, but it could be stopped earlier.
The batch size was set to 16 samples. Checkpoints of the model were periodically
saved every epoch, always the best checkpoint (in terms of validation loss). If the
CUDA framework is available, the training runs on the GPU; if not, then on the
CPU. During the training stage, we monitored the model’s performance on various
variables. These included accuracy, recall, precision, Dice coefficient, IoU, and the

running loss.

For training purposes, we further split the training data into the training subset
(80% of the whole training dataset) and the validation subset (20% of the whole
training dataset). Then, in each epoch, we let the model process the whole training
subset (in the form of batches) while monitoring and logging the aforementioned

variables. After each epoch, we set the model into validation mode. In this mode,
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the model does not update its parameters. We let it process the validation subset
and also monitor and log the variables, out of which the most interesting for us is
the validation loss, since this is used both for the early stopping and for saving the
checkpoints. After the validation was completed, we set the model into the training
mode again, where it could further update its parameters. This whole process was
repeated until the training was finished, and the model could be evaluated on the

testing dataset.

5.4 Evaluation Methods

Upon completing the training process, we initiated the final evaluation of the
segmentation model. The best-performing model, determined by the lowest val-
idation loss, was loaded from the saved checkpoint and set to evaluation mode
to prevent any parameter updates. Subsequently, the model processed the entire

testing dataset, and the final testing metrics were computed.

We assessed the model using both quantitative and qualitative methods. The quan-
titative evaluation included the Dice coefficient and IoU metrics - we describe these
in more detail and why they are most suitable for segmentation tasks in Chapter
3, in Section 3.4. For qualitative assessment, we visualized the predicted binary

masks alongside the ground truth masks to facilitate direct comparison.

5.5 Data Preprocessing

Since we work with two very distinct datasets, and furthermore, the TIGER
dataset is composed of three other datasets, we need to employ a robust pre-
processing framework to align all datasets on the same level. In Figure 5.5, we

can see how the images and masks from each dataset are preprocessed. Below, we
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describe each preprocessing step for each image and mask set.

Normalization Scaling Create patches

Binary relabeling Scaling Create patches

Filter out too small

Normalization Create patches .
images

TIGER
pseudo-masks

Create patches

Figure 5.5: The preprocessing pipelines of both TIGER and TNBC datasets.

5.5.1 Normalization

TIGER and TNBC datasets pose several challenges to us. As we described in
section 5.2, data come from four distinct sources (three for TIGER and one for

TNBC) - this means that the staining is very different, which we can see in Figure

5.6.
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(c) TIGER image — TCGA (d) TNBC image

Figure 5.6: Example images from TIGER datasets [15] and TNBC [78] before
normalization.

Firstly, we tried a randomly selected single image as a reference image for Macenko
normalization, which yielded suboptimal results when assessed visually. We have
considered other approaches to selecting a reference image, but as a recent study
[79] showed, when selecting only a single reference image for Macenko normaliza-
tion, the results will always be biased and suboptimal. Therefore, we employ the
multi-target Macenko stain normalization technique as described in [79], where
we select 8 reference images from the TIGER and 2 reference images from the
TNBC dataset. This number is not arbitrary; in [79], authors experimented with
a different number of reference images (2-20) and showed that the higher number

has slightly better results, but if the number is too high, there are no signifi-
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cant improvements. They also experimented with different ways of computing the
stain matrix, and the best results were achieved by the avg-post method, and this
method peaked when 10 reference images were selected [79]. Given the sizes of our
respective datasets, we decided to go with the 8 and 2 images and also with the
avg-post method. Then we used the same 10 reference images to normalize both
datasets. The normalization technique improved the color inconsistencies, as we

can see in Figure 5.7.

o\
),
SR

(a) TIGER image — JB

(c) TIGER image - TCGA

Figure 5.7: Example images from TIGER datasets [15] and TNBC [78] after nor-
malization.
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5.5.2 Pseudo-mask Sources

The next step was to generate the pseudo-masks. For this, we created different
variations of the same image. We named the images that were created as a part of
one variation image source. In total, six different image sources were created for the
experiments. We used the original (raw) image as one source, then the normalized
image as another source. Furthermore, we extracted the hematoxylin image out
of the original image (Macenko normalization does this internally). This was done
based on the fact that hematoxylin highlights the cell nuclei, as we described
in Chapter 1. This hematoxylin image became our third image source. Lastly,
by applying histogram equalization to all of the aforementioned image sources (to
increase the overall contrast of the image and shift dark colors into darker ones and
light into lighter ones), we obtained another three image sources. The difference

in the image sources can be seen in Figure 5.8.
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(d) Original image with his- (e) Normalized image with (f) Hematoxylin image with
togram equalization histogram equalization histogram equalization

Figure 5.8: Examples of image sources.

We then operated on each image source with different computer vision techniques
to generate the final pseudo-mask PNGs. We describe each of these techniques in

Section 5.6.

5.5.3 Aligning the TNBC Dataset

To use the TNBC dataset, we needed to align its scale and the ground truth masks.
This dataset was scanned with the 40x magnification; however, the TIGER dataset
was scanned using the 20x magnification. To align them, we down-scaled the

TNBC dataset images and masks by a factor of 2. Moreover, the TNBC ground
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truth masks were relabeled to binary masks by setting all of the other labels except

for the lymphocyte cell labels as background.

5.5.4 Patching Strategy

To be able to feed our data to the deep learning UNet model, we created patches of
fixed size 128 x 128 pixels. The TIGER dataset contained images of varying sizes.
Therefore, we created overlapping patches with a dynamic stride in such a way
that no patch was shifted outside of the original image. We created 19,386 patches
of the TIGER dataset images. The TNBC dataset was nicer since the original
images were of 512x512 pixels in size, and after down-scaling by a factor of 2, they
became 256x256 pixels. Each image was then split into 4 non-overlapping patches.
This got us exactly 200 patches of TNBC dataset images. After this stage, the

data is ready for the training and evaluation process.

5.5.5 Images to Tensors

For the PyTorch framework to work with the PNG image patches, both original
images and masks, we needed to convert them from NumPy arrays into tensors.

This was done before the training and evaluation of each trained model.

5.6 Pseudo-masks Generation

To be able to start training the segmentation model on the TIGER dataset, we
needed to convert the bounding box annotations of lymphocyte nuclei into pixel-
level pseudo-masks. We used a series of computer vision methods, which were
chained in different ways to better identify the region where a cell nucleus is present
within the bounding box. This task was challenging because of the lower contrast

between the nuclei and the surrounding tissue, and also because some nuclei were
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too close to each other, meaning that there was an overlap between the bounding
boxes. This inspired us to create different versions of a single image, to promote
some properties of the image, such as increasing the contrast or isolating only the
hematoxylin staining. We called these versions image sources, and the process of
their creation is described in Subsection 5.5.2 as a part of image preprocessing.
The whole process of pseudo-mask generation can be seen in Figure 5.9. To better
understand the chain of operations applied, we will illustrate it on a single image

example of one image source:

1. Firstly, the image is loaded together with its corresponding bounding box

annotations.

2. Next, the individual labeled nuclei are cropped out of the image, using the

bounding box values.

3. Then a four combinations of operations are applied on the cropped region,
which means that from the single cropped region, four new versions of it
are created, based on which combination of operations was applied. It was

either:
e The Otsu thresholding
e The Adaptive thresholding
e The median blur with Otsu thresholding
e The median blur Adaptive thresholding

4. In the next step, the morphological opening is applied to remove small arti-

facts left after the thresholding.

5. The previous operations created so far a ’prototype’ of the pseudo-mask.

In the subsequent step, the marked watershed is applied, which uses this
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prototype together with the initial cropped image region to create a final

pseudo-mask.

6. Finally, the small pseudo-masks for individual cells are combined into a full-

image pseudo-mask

TIGER Pipeline of computer vision operations Pseudo-mask sets
image sources

Otsu

NG thresholding

Adaptive

thresholdi
resholding o Marked Combine to
...... I full-patch
opening watershed g

Otsu
thresholding

No-blur

Cropping

cells
Normalized HE Blur
Hematoxylin HE

Mask 24

Adaptive

B thresholding

TR G g

Figure 5.9: The process of pseudo-masks generation.

Given that we work with 6 image sources and 4 pipelines of computer vision
operations, where each pipeline is applied to every image source, this gives us in
total of 24 pseudo-masks for any given image. In the following paragraphs, we

describe each computer vision operation in more detail.

Median Blur We use the 3 x 3 median blur with the intuition that it could
remove small noises around the cell nuclei. This filter replaces each pixel with the
median of its neighborhood, which is determined by the size of the kernel. We use
the kernel of size 3 x 3 - this is reasonable for us, since the bounding boxes are of
size 12x 12, 16 x 16, or 18 x 18 and we do want to remove possible small noise but

still preserve the shape of the nuclei.
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Otsu Thresholding The Otsu thresholding finds a threshold that minimizes
intra-class variance and then binarizes the pixel values based on this threshold.
Since this operation needs a grayscale image, we first do this conversion. Then we
apply the Otsu thresholding method and inversion - this automatically computes
the optimal Otsu threshold and also inverts the binarization so that dark nuclei

appear as white foreground and background pixels become black.

Adaptive Thresholding In contrast to Otsu thresholding, adaptive threshold-
ing computes the threshold for each pixel based on its neighborhood. We use the
11x 11 adaptive thresholding with a constant of 2 - this ensures that we cover the
small nuclei diameter but still preserve fine details. In the Equation 5.1 we can
see how the threshold T'(z,y) is computed for each pixel with coordinates = and
y. Firstly, a window W of size B x B is centered around the pixel. Then each
pixel’s grayscale intensity I(u,v) within this window with pixel coordinates u and
v is summed and then averaged. Finally, a constant is subtracted from this mean
to bias the threshold below the local mean. Again, we use it with inversion, as in

Otsu thresholding.

B-—1 B—1
1 fE+T y+T

T(w,y) = 5 > > Iww) - C (5.1)
u=z—B-1 v:y—E

2

Morphological Opening We use the elliptical 3 x 3 morphological opening to
remove any small artifacts left after the thresholding operations and to preserve

the shape of the nuclei.

Marked Watershed To obtain the final pseudo-mask, we employ the mark-

controlled watershed. This includes a series of steps:
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1. Firstly, the distance transform operation computes, for each foreground pixel
in the so-far-created binary mask, the Euclidean distance to the nearest

background pixel, producing a map whose peaks lie at object centers.

2. Secondly, we threshold the distance map, which keeps only the central 30%
of each cell nucleus - this helps to separate the touching nuclei and gives us

the pseudo-mask of sure foreground area (the sure nuclei area).

3. Then we dilate the sure foreground with a 3 x 3 elliptical kernel to expand
the region. Now we consider all pixels lying outside of these regions as sure

background.

4. After that, we subtract the sure foreground from the sure background mask.
This gives us the regions that should have the shape of a ring and are 'un-
known’ - either background or foreground. Those are the pixels that lie on

the boundaries of each cell.

5. Next, we do marker labeling - we mark each connected component of the
sure foreground mask with a different mark (integer), starting with number
1. Then we add number 1 to each pixel value. Lastly, we set those pixels

that are marked as an unknown region to zero. This step ensures that:
e The sure foreground areas start from number 2 onward,
e The sure background areas are marked with number 1, and
e The unknown regions are marked with number 0.

6. Finally, the watershed algorithm will flood and try to segment the unknown
regions (marked with 0). It treats the original image provided to it (the col-
orful crop of cell nuclei) as a height map, where the brighter pixels represent

high elevations and the darker pixels represent low elevations. It also uses
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the marker image to seed the foreground and background regions. During
the segmentation process, it floods the image starting at each marker label,
and when the floods meet, the lines separating the cell nuclei are created.

Pixels on these delineating lines have a value set to -1.

After the mark-controlled watershed produces the delineated nuclei mask, we set all
pixel values that are lower than or equal to 1 to 0 (sure background and delineation
lines) and those that are greater than 1 (all nuclei components) to 1 to create a

binary pseudo-mask.

Full-patch Combining After we obtain the small-sized pseudo-masks for each
cell nucleus bounding box, we reconstruct the full-patch mask by firstly creating
an image where all pixels have 0 values and then applying the binary OR operation
with the small-sized pseudo-masks on the position from which they were cropped.
By this, we get the final pseudo-mask for the original image, where pixels of nuclei

regions have values of 1 and background pixels have values of 0.

5.7 Pseudo-masks Fusion

During the generation of pseudo-masks, we obtained 24 different masks per single
image. We decided to fuse them based on the results of the experiment, which we
present in Subsection 5.8.2 and based on the visualization of the combined masks,
which we can see in Figure 5.10. These combined masks were created using the
pixel-wise addition of all 24 pseudo-masks, which gave us a single pseudo-mask per
image, where pixel values ranged between 0 (all pseudo-masks labeled the pixel as
background) and 24 (all masks labeled the pixel as foreground). For visualization,
a pixel-wise multiplication by 10 was applied to the resulting pseudo-masks to

better see the combined power of the pseudo-masks.
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Figure 5.10: Examples of combined pseudo-masks.

We decided to try two different fusion approaches:

1. Fuse the pseudo-masks via pixel-wise voting at quartile agreement levels -
100%, 75%, 50%, and 25% - keeping only those pixels declared foreground by
at least that percentage of the masks which achieved the highest Dice scores
in the experiment of Subsection 5.8.2. This gave us four sets of fused masks.
The overview of this fusing approach can be seen in Figure 5.11. Firstly, the
masks are summed together (pixel-wise) and then all pixels that are greater

than 0 are set to 1 (foreground - nuclei) to maintain the binary mask.

2. Fuse the pseudo-masks via pixel-wise voting consensus by all involved masks

- a pixel was labeled as foreground (cell nuclei) if either:
e 24 out of 24 masks declared the pixel as foreground,
e 23 out of 24 masks declared the pixel as foreground,
e 22 out of 24 masks declared the pixel as foreground, or
e 21 out of 24 masks declared the pixel as foreground.

This approach also gave us another four sets of fused masks. The whole
process can be seen in Figure 5.12. We always use all 24 pseudo-mask sets,

sum the pseudo-masks (pixel-wise), and then the threshold is used based on
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the voting strategy. If the pixel value is greater than or equal to the number
of masks that need to agree on it (either 24, 23, 22, or 21), it is set to 1

(foreground - nuclei); otherwise, it is set to 0 (background).
Together, we obtained 8 sets of fused masks.

Pseudo-mask sets

)

Mask 1

BB 2T }—P‘ Pixels > 0 set to 1 W
summation

Figure 5.11: The process of pseudo-masks fusion using quartile agreement levels.

Pseudo-mask sets

Mask plxel.-w1se Mask plxel-.wme Fused mask
summation thresholding

Mask 24

Figure 5.12: The process of pseudo-masks fusing using voting consensus.
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5.8 Experiments

Our proposed system evolved with each performed experiment, since each experi-
ment built on the previous one. We will describe each experiment in this section,
with a focus on the data used for training and testing, the experiment setup and
workflow, and the results of the experiment. Every experiment was run three times
to reduce the risk that random initialization of the model’s parameters, or the split
of training data into training and validation subsets, would significantly improve

or significantly worsen the final results.

For the first experiment, we utilized just the U-Net model itself as a deep learning

module. The fully annotated TNBC dataset was used for this task.

The second experiment used the pseudo-masks generated by a combination of
image sources and different computer vision techniques. The pseudo-masks were
generated for the weakly annotated TIGER dataset from the provided bounding
box annotations. These were then used as ground truth masks for subsequent
training of the U-Net model, which was trained on the TIGER dataset. For the
final evaluation, the TNBC dataset was used.

The third experiment builds on the second. It compared the different fusing strate-
gies of mask sets. Again, we used these fused masks to train the U-Net model on

the TIGER dataset, and the TNBC dataset was used for the final evaluation.

In the fourth experiment, we utilized a transfer learning strategy, where we took
the best model trained during the third experiment and fine-tuned it using part

of the fully annotated TNBC dataset.
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5.8.1 Experiment 1 - Training on TNBC Dataset

In the first experiment, we wanted to check whether the small, fully annotated

TNBC dataset would be sufficient for training the segmentation model.

Data We use only the fully annotated TNBC dataset, both for the training and
for the final evaluation. This dataset is split into three folds, where the folds

contain the following number of image patches:
e Fold 1 contains 72 image patches, from 4 patients,
e Fold 2 contains 68 image patches, from 4 patients, and
e Fold 3 contains 60 image patches, from 3 patients

Always, two folds were used as the training set, and one fold was used as the
testing set. Together, this gave us three rounds of training and evaluation for
one experiment run. To calculate the final result for each reported metric, the
weighted average of the metrics logged by every round was calculated, given the
Equation 5.2, where M is the final reported metric (Dice coefficient and IoU),
n is the number of the fold that was used for evaluation, 7 is the i-th fold used
for model evaluation, M; is the evaluation metric calculated when evaluating the

model on the i-th fold, and W; is the size of the i-th fold.

v Z?:l M; - W;

M= =S (5.2)

The run of this experiment is simple. We train the U-Net model using the TNBC
dataset, with the provided ground truth masks, and evaluate it on the same

dataset.

86



Chapter 5. Our Work

Results The experiment ran on average around 35 epochs due to early stopping.
From the training and validation loss in Figure 5.13, we can observe that the model
was not able to learn when trained only on the small, although fully annotated,
dataset. This can be seen both in the graph spikes on the training loss as well as
on the validation loss, which was not able to improve significantly after the first 10
epochs. We see this also on the evaluation metrics, which are summarized in Table
5.1, where the Dice coefficient was 18.91% and the IoU was 10.64%. In the Figure
5.14, we can see that the model was not able to differentiate between different

cell nuclei types, nor was it able to distinguish the cell nuclei and the background

area.
Table 5.1: Results of the model trained on the TNBC dataset.
Metric Value (%)
Dice coefficient 18.91
IoU 10.64
Experiment
— Validation loss = Train loss
0.96 é
0.94
0.92 .
0.9
0.88
0.86
0.84 epoch
0 5 10 15 20 25 30

Figure 5.13: The loss function during training (green) and validation (orange) of
the model trained on the TNBC dataset.
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(d) Image 1 ground truth (e) Image 2 ground truth (f) Image 3 ground truth

Figure 5.14: Visual evaluation of model trained on the TNBC dataset. Predicted
lymphocytes (cyan) and ground truth lymphocytes (green).

5.8.2 Experiment 2 - Pseudo-mask Generating Strategies

In the second experiment, we used the 24 different pseudo-masks to train 24 differ-
ent models. We wanted to compare the different models based on the pseudo-mask

sets they were trained on.

Data As training data, we used the TIGER image patches. Together, 19,386
image patches were used in the training set. Pseudo-mask sets were used as ground
truth labels for the training of the segmentation model. We explain the generation

of these sets in detail in Section 5.6. Since these image patches come with weak
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annotations, we needed to evaluate the model on the TNBC dataset. For the
evaluation, we used all 200 patches present in the TNBC datasets. The Dice

coefficient and IoU were used as the evaluation metrics.

Results We summarized all results from this experiment in the Table 5.2. We
can see that when compared to the first experiment, where we trained the same
model only on the small fully annotated TNBC dataset, both the Dice coefficient
and IoU improved significantly. We can also see in Figure 5.15 that the model was
able to learn better and converge faster (14 epochs on average - more than 2 times

faster than the model trained solely on the TNBC dataset)

From the results, we can see that the highest Dice coefficient (52.57%) and IoU
(36.01%) were achieved by the model that was trained on the mask set, which was
created from the histogram-equalized hematoxylin image source, where the blur

was not applied and where the Otsu thresholding was used.

Next, we noticed that the histogram equalization (HE) boosts the model’s per-
formance. It consistently improved segmentation metrics across all image sources,
except the ones that were using the normalized image. For example, a histogram-
equalized and normalized image source with blur and adaptive thresholding reached
51.09% Dice and 34.83% IoU - over 11.5% improvement in Dice coefficient and over
8% improvement in ToU over the same non-equalized normalized pipeline (39.57%

Dice, 26.78% IoU).

We also observed that pseudo-mask sets that used median blur were greatly out-
performed by the ones that did not use it. This might be because the blur reduces
noise on one hand, but on the other hand, it could distort cell boundaries and

'blend’ the cell nuclei with its surroundings.

Overall, there was no universally dominant strategy - when deciding whether to

89



Chapter 5. Our Work

use only one image source, or only blur/no-blur, or a single thresholding technique,
we always observed that a different strategy could overrule it. This could also be

demonstrated by the following examples:

e On raw images, the best result is with no blur + Otsu thresholding (49.94%
Dice), but on normalized HE images, the best is no blur + adaptive thresh-
olding (51.09% Dice), and on hematoxylin HE, the top is no blur + Otsu
thresholding (52.57% Dice).

e In the raw setting, disabling blur (49.94% Dice) beats enabling it (46.92%
Dice) for Otsu thresholding, but in the hematoxylin case, enabling blur
(50.39%) actually outperforms no-blur for Otsu thresholding when equal-

ization is applied.

e For raw HE images with blur applied, adaptive thresholding (47.50% Dice)
beats Otsu thresholding (44.86% Dice), whereas for normalized images with
blur applied, Otsu thresholding (49.45% Dice) outperforms adaptive thresh-
olding (39.57% Dice) without equalization.

These observations inspired us to design another generation of sets of pseudo-
masks, where we fuse the original 24 masks into one - we explain the process
of pseudo-masks fusion in Section 5.7 and the experiment itself in Subsection

5.8.3.

On the qualitative side, we can see in Figure 5.16 that the best model, trained on
the hematoxylin image with HE, without blur and with Otsu thresholding, was
able to segment cell nuclei much better than the model trained only on the small
TNBC dataset. The issue here is that, although it can successfully determine
whether a pixel belongs to nuclei or tissue, it cannot determine very well if the

pixel should belong to the lymphocyte nuclei or some other cell type.

90



Chapter 5. Our Work

Table 5.2: Dice and IoU percentages for the models trained on different pseudo-
mask generation strategies.

Image Source' | Blurred | Threshold Type | Dice (%) | IoU (%)
raw yes adaptive 44.18 29.28
raw no adaptive 46.53 31.45
raw yes otsu 46.92 31.60
raw no otsu 49.94 33.77
raw HE yes otsu 44.86 29.42
raw HE no otsu 47.28 31.91
raw HE yes adaptive 47.50 31.98
raw HE no adaptive 49.30 33.33
normalized yes adaptive 39.57 26.78
normalized no otsu 46.33 31.24
normalized no adaptive 48.30 32.48
normalized yes otsu 49.45 33.35
normalized HE no otsu 38.30 25.96
normalized HE no adaptive 47.70 32.05
normalized HE yes otsu 48.66 32.66
normalized HE yes adaptive 51.09 34.83
hematoxylin no otsu 41.61 27.46
hematoxylin no adaptive 45.18 29.77
hematoxylin yes adaptive 47.94 32.16
hematoxylin yes otsu 49.19 33.10
hematoxylin HE yes adaptive 48.06 32.20
hematoxylin HE yes otsu 50.39 34.22
hematoxylin HE no adaptive 52.35 35.97
hematoxylin HE no otsu 52.57 36.01

'HE: histogram-equalized
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Experiment
— Train loss = Validation loss
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Figure 5.15: The loss function during training (green) and validation (orange) of
the best model trained with the hematoxylin histogram-equalized pseudo-mask,
created without blur applied and with Otsu thresholding.
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(d) Image 1 ground truth (e) Image 2 ground truth (f) Image 3 ground truth

Figure 5.16: Visual evaluation of the best model trained with the hematoxylin HE
pseudo-mask, created without blur applied and with Otsu thresholding. Predicted
lymphocytes (cyan) and ground truth lymphocytes (green).

5.8.3 Experiment 3 - Pseudo-mask Fusing Strategies

The third experiment expanded further on the idea that different pseudo-mask sets
can sometimes better capture the nuclei under varying conditions, as we saw in
experiment 2 in Subsection 5.8.2. For this purpose, we try to combine the power
of different pseudo-mask sets to create one pseudo-mask that will be used for the
training. In this experiment, we want to compare different fusing strategies for the

resulting pseudo-mask.
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Data Similarly to Experiment 2, we work with the TIGER dataset as the training
set for the model, and evaluate it on the TNBC dataset. The major change is the
usage of fused masks. We present the different fusing strategies in Section 5.7.
Together, there are 8 fused pseudo-mask sets, created with both best quartile
agreement levels and voting consensus. The rest of the experiment setting is the

same as it was in Experiment 2.

Results From the results summary presented in Table 5.3, we can clearly state
that the consensus method - where either 24 out of 24, 23 out of 24, 22 out of
24, or 21 out of 24 masks voted for a pixel in a fused pseudo-mask - heavily
outperformed the quartile agreement strategy, where the best 100%, 75%, 50%, or
25% of the pseudo-masks voted for a pixel (if at least one mask voted for the pixel,
the pixel was set as foreground - nuclei). The order of the best pseudo-masks was
determined by the previous experiment, which we describe in Subsection 5.8.2,

specifically the Dice coefficient values.

The best model trained on the consensus strategy achieved a Dice coefficient of
53.53%, while the best model trained on the quartile strategy achieved a Dice of
42.93%, by 10.6% worse than the best consensus strategy model.

We also compare these two best models in terms of train and validation loss, which
we can see in the Figure 5.17. There, we see that the consensus model was able
to learn better during training as well. The quartile model was not able to learn

that good, and the training even stopped earlier.

Finally, we compare these two models visually, in the Figure 5.18. From the figure,
it is clear that the quartile model also captures cell nuclei surroundings, and is more
prone to mark non-lymphocyte nuclei as lymphocyte nuclei. The consensus model

is much better at segmenting only the cell nuclei, however, the same issue as in
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experiment 2 prevails - the model can identify cell nuclei, but it is harder for it to

tell if it is a lymphocyte or non-lymphocyte nucleus.

When we compare the best model from this experiment - the consensus model
(53.53% Dice) with the best model from experiment 2 - the model trained on the
HE hematoxylin image, without blur and Otsu thresholding (52.57%), we see that
by fusing the masks and selecting the correct fusion strategy, we were able to

improve the model’s performance by 0.96%.

Table 5.3: Dice and IoU percentages for the models trained on different pseudo-
mask fusion strategies.

Masks Set Type | Mask Set | Dice (%) | IoU (%)
consensus leave 0 out 50.88 34.96
CcoOnsensus leave 1 out 53.53 37.42
consensus leave 2 out 52.31 36.35
CONSensus leave 3 out 52.58 36.33
quartile top 100% 41.11 26.40
quartile top 75% 40.35 25.72
quartile top 50% 42.93 27.89
quartile top 25% 42.59 27.61
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Experiment
— Leave 1out-Trainloss = Leave 1 out - Validation loss == Top 50% - Train loss == Top 50% - Validation loss

0.7
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0.4

Figure 5.17: The loss function during training (green dashed) and validation (or-
ange dashed) of the best model trained with the quartile strategy of fusing pseudo-
masks, and the loss function during training (green solid) and validation (orange
solid) of the best model trained with the consensus strategy of fusing pseudo-masks.
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(a) Image 1 prediction - Top (b) Image 2 prediction - Top (c) Image 3 prediction - Top
50% 50% 50%

(d) Image 1 prediction - (e) Image 2 prediction - (f) Image 3 prediction -
Leave 1 out Leave 1 out Leave 1 out

(g) Image 1 ground truth (h)

Figure 5.18: Visual comparison of the best models trained with the quartile (top
row) and consensus strategies (middle row), and ground truth (bottom row). Pre-
dicted lymphocytes (cyan) and ground truth lymphocytes (green).
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5.8.4 Experiment 4 - Transfer Learning

In the last experiment, we wanted to build on the results of experiment 3. We
decided to take the best model from that experiment and fine-tune it using a
portion of data from the fully annotated TNBC dataset. We also experimented
with the encoder freezing during the training to see if we could further improve

the model’s performance.

Data We use the model pretrained on the TIGER dataset. For the fine-tuning,
we use the TNBC dataset, with the exact same 3-fold split as we used in experiment
1, which we describe in Subsection 5.8.1. We always used 2 folds for fine-tuning and
1 fold for evaluation of the model. The final evaluation metrics were computed as
a weighted average of the metrics reported in each fold evaluation. We fine-tuned
the model under two conditions. We tried fine-tuning it with a frozen encoder,
which means that the weights of the encoder were not updated during the training,
only the weights of the decoder. In the second approach, we trained the whole

model, both the encoder and the decoder.

Results In the Table 5.4, we have summarized the final evaluation metrics of this
experiment. We can see that when compared to the best model from experiment
3 (53.53% Dice) - the consensus model, where 23 out of 24 masks voted for a pixel
- both the model with unfrozen encoder (55.01% Dice) and the one with frozen
encoder (57.59% Dice) were able to slightly improve. Overall, the best model was
the model with frozen encoder during the fine-tuning - it achieved a Dice coefficient

of 57.59% and ToU of 41.25%.

On the graph showing the training and validation loss of the model with frozen
encoder in Figure 5.19 we can see that the fine-tuning enabled the model to learn

slightly more, but also that the training was very short (13 epochs) since the model
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could not improve further on the validation loss.

Finally, in Figure 5.20 we observe a similar behavior to the best models from

experiments 2 and 3 - that the model can recognize the cell nuclei pixels, but has

a problem of differentiating between the pixels that belong to lymphocyte nuclei

and non-lymphocyte nuclei.

Table 5.4: Dice and IoU percentages for the models fine-tuned on the TNBC

dataset.
Encoder status Dice (%) IoU (%)
Unfrozen 55.01 38.6
Frozen 57.59 41.25
Experiment
= Train loss = Validation loss
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Figure 5.19: The loss function during training (green) and validation (orange) of
the model fine-tuned with the frozen encoder.

99



Chapter 5. Our Work

(d) Image 1 ground truth (e) Image 2 ground truth (f) Image 3 ground truth

Figure 5.20: Visual evaluation of the model fine-tuned with the frozen encoder.
Predicted lymphocytes (cyan) and ground truth lymphocytes (green).

5.8.5 Experiments Summary

To summarize the experiments, we decided to put the evaluation metrics of the
best model from each experiment into a single Table 5.5. There, we can see that in
each subsequent experiment, we were able to improve the overall performance of
the corresponding model. The best model overall is the one trained on the TIGER
dataset and the consensus fusion strategy, where 23 out of 24 masks voted for
a pixel to be foreground (lymphocyte nuclei) and then fine-tuned on the TNBC

dataset, with the encoder frozen during the training.
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Table 5.5: Comparison of best Dice and IoU across experiments.

Experiment Best Dice (%) | Best IoU (%)
1 — Training with full annotations 18.91 10.64
2 — Mask generating strategies 52.57 36.01
3 — Mask fusing strategies 53.53 37.42
4 — Transfer Learning 57.59 41.45

5.9 Tools

The whole project was written in the Python programming language version 3.12
[80]. We used Python libraries such as NumPy [81] for efficient numerical op-
erations, and Matplotlib [82] for the image, masks, and overlay visualizations.
Furthermore, we utilized the power of Jupyter Notebooks [83] to be able to run
parts of code and easily explore the data during the preprocessing and pseudo-
mask creation stages, and also to be able to upload data and submit training on

the remote clusters.

For the image manipulation, transformation, and other computer vision opera-
tions during the preprocessing, pseudo-masks generation, and pseudo-masks fu-
sion stages, we relied on the OpenCV Python library [84]. For the multi-target
Macenko stain normalization, we used the existing implementation from [85]. The

whole preprocessing and pseudo-masks creation process was executed locally on a

MacBook Air with an M1 Silicon chip, with 16 GB of RAM.

Libraries and frameworks such as scikit-learn [86], PyTorch [87], PyTorch Light-
ning [88], and Segmentation Models PyTorch [89] were used for implementation of
the classical machine learning baselines as well as for building the deep learning
segmentation model to reduce the boilerplate code and make use of trusted and

validated approaches implemented in those modules.
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For the development and debugging, we used the PyCharm [90] integrated devel-
opment environment. We also used Git [91] for version management and GitHub

[92] for remote control of our project.

The training of all models was done remotely in the cloud environment, since this
was the fastest and most feasible option. We utilized the Azure Machine Learning
Studio [93] for this purpose. As a compute device, we used the virtual machine,
which provides 24 CPU cores, 448 GB of RAM, a 2.9 TB disk, and 4 NVIDIA
Tesla V100 GPUs. The computationally expensive tasks used CUDA [94] for GPU
acceleration, so that the training could be completed in a shorter amount of time
compared to the CPU. For easier monitoring, logging, data visualization, and
the overall improved management of the whole training process and evaluation
process, we used the Weights and Biases [95], where we could save, compare, and

plot different trainings and runs.
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Conclusion

The goal of this work was to develop a hybrid approach that would be able to
deal with common challenges in the automated semantic segmentation of medical
images. These were, namely, a low volume of fully annotated data and a large
volume of data that is only weakly annotated. The task was to segment the
lymphocyte nuclei. This was also a great challenge, since many state-of-the-art
works work with weak annotations in the form of bounding boxes, but their goal
is to perform the nuclei segmentation, no matter the cell nuclei class, while in our
work, we try to segment a specific class of nuclei - the lymphocyte nuclei. To
our best knowledge at the time of writing, there is little to no available research
papers on the exact specific setting we have. Two publicly available datasets were
used for this task: the TIGER dataset [15] with bounding box annotations of
lymphocyte nuclei, and the TNBC [78] dataset, which provided full pixel-level

mask annotations of lymphocyte nuclei.

We selected the deep learning model based on the state-of-the-art work and em-
ployed known methods of traditional computer vision, such as Otsu and adaptive

thresholding, and mark-controlled watershed, to prepare different sets of pseudo-
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masks out of bounding box annotations. We then built further on the idea that
each set could perform better on different images, so we developed different pseudo-

mask fusion strategies.

In the experiments, we proved that training the model only on a very small TNBC
dataset, although fully annotated, is insufficient. The same model, when trained
on the larger TIGER dataset, even though with pseudo-masks used during the
training, achieved superior results compared to the model trained solely on the
TNBC dataset, both in terms of Dice coefficient and IoU. The model that used
the best fused pseudo-mask showed improvements on both evaluation metrics as
well. The final model that was pretrained on the TIGER dataset with pseudo-
masks and then fine-tuned on the TNBC dataset was able to achieve the best

results in Dice coeflicient and IoU.

Possible future improvements may include a fully automated pipeline with an
iterative self-training loop, where in the first iteration we train the model using
pseudo-masks generated via the traditional computer vision pipeline, then let it
predict the masks on the same dataset it was trained on, effectively creating a
second generation of pseudo-labels. Then it would be retrained using the first
generation of predictions, and so on, with iterative improvements of the pseudo-

masks.
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Resumé

7.1 Uvod

V poslednych rokoch ukazuju algoritmy poéitacového videnia a hlbokych neuréno-
vych sieti vyborné vysledky v mnohych oblastiach spracovania obrazu, napriklad
detekcie, segmentéacie, ¢i klasifikicie. To mé vyrazny dopad na mnohé oblasti a
jednou z nich je aj medicina. V medicine sa pouzivaji rozne metody, ktoré poma-
haja pri diagnostike. Jednou z takychto metdd je aj histologia, kedy je odobrany
kusok tkaniva, ktory je nasledne dalej spracovany. Vzorky sa casto zafarbuju,
pre zvysenie kontrastu medzi roznymi Struktirami, ako st jadra buniek a tkaniva.
Jednym z najpouzivanejsich zafarbovacich protokolov je zatarbovanie pomocou he-
maoxylinu a eozinu, kde hematoxylin zafarbuje jadra buniek do odtienov fialovej
a eozin zafarbuje okolité tkanivo do odtienov ruzovej. Takto ofarbené vzorky sa

potom dalej analyzuju.

V naSej praci sa zameriavame na automatizovani segmentaciu lymfocytov z né-
dorového tkaniva prsnikov, ktoré je ofarbené hematoxylinom a eozinom. Tieto

lymfocyty moézu totiz sluzit ako potencialne biomarkery pri prognéze nadorového
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ochorenia, akym je aj rakovina prsnikov. V beznej praxi, musi kvalifikovany pa-
tolog manuéalne pocitat a odhadovat mnozstvo a priestorové usporiadanie tychto
lymfocytov, ¢o je ¢asovo naro¢né a nachylné na chyby a nepresnosti. Algoritmy
umelej inteligencie a hlbokych neurénovych sieti ukézali v poslednych rokoch vy-
soky potenciél pri spracovani medicinskych obrazovych dat. Tieto algoritmy vSak
vyzaduju velké mnoZstvo presne anotovanych dat, pricom priprava tychto presnych
anotacii opét spociva na medicinskych expertoch. Preto v nagej praci navrhujeme

rieSenie, ktoré vyuziva dva verejné zdroje dat:

e velky dataset TIGER, ktory je slabo anotovany a poskytuje anotacie jadier

lymfocytov v tvare ohranic¢ujicich ramdéekov.

e maly dataset TNBC, ktory je tiplne anototvany a poskytuje presné anotécie

jadier lymfocytov na pixelovej tirovni.

Kedze anotacie datasetu TIGER st vo forme ohranic¢ujucich ramdéekov, ciel tejto

prace ma dve Casti:

1. Vyvinuat, implementovat a porovnat rozne stratégie vytvarania pseudo-masiek

pre dataset TIGER, za pouzitia metod pocitacového videnia.

2. Natrénovanie segmentacného modelu hlbokého ucenia, pricom pri tréningu
budu pouzité pseudo-masky pripravené réznymi spésobmi a tento model

bude vyhodnoteny metrikami ako st Dice koeficient a IoU.

7.2 Analyza problému

7.2.1 Pocitacové videnie

Videnie je jednym z naSich priméarnych zmyslov, a preto je pochopitelné, Ze hla-

déame a vyvijame rdézne metddy na zachytenie, uskladnenie a spracovanie obrazu.
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Pocitacové videnie, ako podmnozina pocitacovej vedy, sa zameriava na vyuzitie
pocitacov pre extrakciu zmysluplnych informacii z obrazovych dat, ¢im sa snazi
napodobnit schopnosti Tudského mozgu. Medzi hlavné tulohy patri napriklad kla-
sifikdcia, detekcia a segmentacia objektov na obrazovych datach. Tieto tlohy
vieme riegit bud tzv. tradi¢nymi metodami pocitacového videnia, s vopred za-
definovany postupom, alebo algoritmami strojového ucenia a umelej inteligencie.
Medzi tradi¢né metddy segmeticie obrazu vieme zaradit napriklad Otsu funkciu
prahovania (ang. thresholding), adaptivnu funkciu prahovania, alebo watershed

algoritmus.

Strojové ucenie a umelé inteligencia tiez tvoria stcast pocitacového videnia. Pri
klasickom programovani su to l'udia, kto tvori poé¢itacovy program, zatial ¢o pri
: . , . . o e
strojovom uceni nechame stroj, aby vytvoril optimélny program, pokial si mu
znédme vstupy a vystupy. Stroj sa u¢i toto mapovanie medzi vstupmi a vystupmi
analyzou priznakov a vzorov vo vstupe. HIboké ucenie a Specidlne konvoluc¢né
neurénové siete st zname velmi dobrou schopnostou identifikacie tychto vzorov aj

v obrazovych datach.

Kvalita vstupnych dat pre tieto algoritmy je velmi dolezita. Preto sa vyuZivaju
rozne techniky predspracovania dat, ako prvy krok pripravy dat. V doméne digi-
talnych histologickych snimkov sa ¢asto pouziva farebna normalizécia, ktora ma
zmiernit vykyvy v ofarbeni snimok hematoxylinom a eozinom. Medzi najpouziva-

nejsie normalizac¢né techniky patri napriklad tzv. Macenko normalizécia.

7.2.2 Hlboké neurénové siete

Umelé neurénové siete st inSpirované biologickymi neurénmi, kedy jeden neurén
prijima vstupy zo svojho okolia a nésledne sa bud "aktivuje", teda vysle signal

pre dalsie neurony, alebo ostava neaktivny. Zakladnou stavebnou jednotkou ne-
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urénovych sieti je teda neurén. Jedna sa o funkciu, ktorda mé vstupy, a kazdy
vstup nasobi jeho prislichajiucou vahou. Takto vynasobené vstupy sa séitané a
pripocita sa k nim eSte prahovi hodnota. Takato funkcia je stale linearna, preto,
aby sme boli schopny riesit aj nelinearne problémy, prechadza vysledni hodnota
do tzv. aktivacnej funkcie, ktoréd je nelinearna. Medzi priklady aktiva¢nych fun-
kcii patri napriklad funkcia sigmoid, tanh, alebo ReLLU. Nerony vedia byt nésledne
usporiadané do vrstiev, kde neurény z jednej vrstvy prijimaji vstupy od neurénov
z prechédzajicej vrstvy a posielaji vystupy z aktivaénych funkcii ako vstup pre
neurény z nasledujicej vrstvy. Tymto spésobom vznika neurénova siet. Vystup
neurénov na poslednej vrstve je predikcia siete. Tato predikcia sa potom porov-
nava so skuto¢nou hodnotou vystupu a vyratava sa tzv. chybova funkcia. Chyba
siete je nasledne spétne propagovanéa cez vSetky vrstvy a neurdny, ktoré si na-
sledne upravuji svoje parametre (vahy a prahy) tak, aby minimalizovali chybova
funkciu. Pozname rézne chybové funkcie, napriklad MSE chybova funkcia alebo

Dice chybové funkcia.

V priebehu rokov vznikli rézne architektiry neurénovych sieti. Medzi najznamejsie
patria konvolu¢né neurénové siete, ktoré si schopné zachytit komplexné vzory v
datach s narastajicou hlbkou siete. Konvolu¢né siete vyuzivaja konvolucné bloky

spolu s ReLLU aktiva¢nou funkciou na extrakciu relevantnych ¢t z obrazku.

Jednou z architekttur konvolu¢nych neurénovych sieti je aj U-Net architektira,
ktora dosahuje vyborné vysledky pri segmentacii objektov z obrazovych dat. Pri
segmentécii chceme vytvorit pixelovii masku, kde budi vyznacené pixely, na kto-
rych sa nachadza hladany objekt. Obmedzenim klasickych konvolu¢nych architek-
tar je neschopnost zachovat priestorové informécie po pociato¢nych vrstviach na
extrakciu priznakov. Tento problém riesi novy typ architektiry — enkéder-dekoder

architektira. Enkoder extrahuje najviac opisné ¢rty obrazka a komprimuje ich,
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pri¢om znizuje redundanciu informacii a dekoder sa nasledne snazi z tejto zakédo-
vanej reprezentacie obrazka naspéat poskladat pévodny obrazok. Stratova funkcia
pritom pocita rozdiel medzi povodnym obrazkom a obrazkom vytvorenym dekode-
rom. Ak je dekodér schopny vytvorit obraz velmi podobny pévodnému, znamena
to, ze skryta reprezentacia obrazu, ktori enkoder extrahoval, je dostato¢ne kva-
litna. Nésledne je dekdéder mozné odstranit a namiesto neho pripojit modul pre
klasifikaciu, segmentaciu alebo lokalizaciu, ktory vyuzije priznaky naucené enko-
derom. V segmentacnych tulohéch sa do casti dekddera zavadza jednoducha modi-
fikacia. Namiesto generovania pévodného obrazu sa dekodder trénuje na vytvaranie
segmentacnej masky, kde kazdy pixel nesie pravdepodobnost prislusnosti k urcitej
triede. Téato vypocitané maska pravdepodobnostnej distribticie sa nésledne pouzije
spolu s origindlnou maskou v stratovej funkcii na vypocet ich rozdielu a usmer-
nenie tréningu. U-Net architektura tiez pozostava z enkdédera a dekddera, pricom
eSte pridava koncept tzv. preskocenych spojeni, kedy posledny vystup z kazdej
vrstvy enkodera je zretazeny s prvym vstupom do kazdej vrstvy dekodera, ako
kompenzaciu za moznu stratu ¢ft, ktord mohla nastat pri zmensovani aktivacnej

mapy obrazka.

Medzi dalsie varianty modelu U-Net patri napriklad 3D U-Net, siet, ktora je po-
dobna U-Net architekture ale upravena pre pracu s 3D déatami, alebo Attention
U-Net, ktory vyuziva branu pozornosti na upriamenie pozornosti siete na najdo-

lezitejsie Casti obréazka.

Dalsfm typom architektury st tzv. Vision Transformery, ktoré vyuzivaji mnoho

blokov pozornosti na zachytenie globalneho kontextu z obrazku.
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7.3 Nasa praca

Tato praca predstavuje metodu, ktoréa sa zaobera vyzvami, ked mame plne anoto-
vany subor udajov, aviak velmi malej velkosti (dataset TNBC), a velky dataset,
ale slabo anotovany (dataset TIGER). Nasim cielom je prekonat tieto vyzvy imple-
mentaciou hybridného pristupu na sémanticka segmentaciu lymfocytov. Hybridny
pristup sa sklada z predspracovania, ktoré pripravuje udaje na trénovanie a vy-
hodnotenie a zo samotného vytvarania pseudo-masiek. Vysledné vyrezy obrazkov
sa potom pouziji na trénovanie segmenta¢ného modelu hlbokého ucenia - archi-
tektury U-Net, s ResNet-34 enkoéderom, ktoré bola predntrénovana na ImageNet

datasete. Hyperparametre modela st nasledovné:

Dice stratové funkcia

Adam optimizér

Pociato¢na rychlost uc¢enia 0.001, znizena faktorom 0.1 kazdych 5 epoch

Tréning je nastaveny na 100 epoch s predc¢asnym zastavenim, ak sa valida¢na

chyba zhorsi pocas 10 kontrol, kontrola sa vykonava po kazdej epoche

Najskor sa pokiisime natrénovat a vyhodnotit model na samotnom malom da-
tasete. Potom pouzijeme techniky predspracovania a pocitacového videnia na
generovanie roznych suborov pseudo-masiek z anotécii vo forme ohranic¢ujtcich
ramcekov pre slabo anotovany dataset a natrénujeme na nom model, ktory opét
vyhodnotime na malom, plne anotovanom datasete. Nasledne sa pokusime iden-
tifikovat a vybrat najlepSiu stratégiu zluc¢ovania stiborov masiek, aby sme vyuzili
rozne schopnosti siborov zachytit oblast bunkovych jadier. Nakoniec vyberieme
najlepsi model (s najuspesnejSou stratégiou zlucovania masiek) a dotrénujeme ho
pomocou casti idajov z plne anotovaného datasetu. Kazdy z tychto experimentov

vyhodnotime pomocou metrik ako Dice koeficient a IoU.
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7.3.1 Datasety

Pracujeme s dvoma datasetmi. Prvym datasetom je TIGER dataset, ktory obsa-
huje 1879 PNG obréazkov tkaniva rakoviny prsnikov, pod 20x zblizenim, zafarbe-
nych hematoxylinom a eozinom. Obrazky su roznej velkosti a pochadzaju z troch
roznych institatov. Dataset je anotovany slabo, anotacie st vo forme ohranicuju-

cich ramdekov.

Druhym datasetom je dataset TNBC. Obsahuje 50 PNG obrazkov (od 11 pacien-
tov) tkaniva rakoviny prsnikov, pod 40x zblizenim, zafarbenych hematoxylinom a
eozinom. VSetky obréazky sa velké 512 x 512 pixelov a st k nim poskytnuté ano-
tacie vo forme pixelovych masiek, kde st anotované rozne triedy buniek, spolu 11

tried.

7.3.2 Predspracovanie

Ked7e obrazové data pochadzaju z roznych zdrojov, vyuzivame multi-ciel ovii Ma-
cenko normalizaciu, pricom pouzivame 8 obrazkov z datasetu TIGER a 2 obrazky z
datasetu TNBC. Nésledne normalizujeme obrazky v oboch datasetoch. Obrazky v
TNBC datasete este preskalujeme faktorom 0.5, aby sme zmenili zbliZenie z 40x na
20x. Nasledne vytvorime z obrézkov z oboch datasetov vyrezy o velkosti 128x128.
Pokial st obrazky z TIGER datasetu prili§ malé, nepouzijeme ich. Spolu nam
takto vznike 19 386 vyrezov z TIGER datasetu a 200 vyrezov z TNBC datasetu.
Na maskach z TNBC zmenime oznacenie pre triedy iné ako lymfocyty na pozadie
a vytvorime takto binarnu masku. Néasledne aj tieto masky preskalujeme faktorom

0.5 a vytvorime z nich vyrezy.

Pocas predspracovania vytvorime aj 6 roznych verzii obrézka, z obréazkov v TIGER

datasete, konkrétne:
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e Povodny obréazok

Povodny obrazok s vyrovnanim histogramu (ang. histogram equalization)

Normalizovany obréazok

Normalizovany obrézok s vyrovnanim histogramu

Hematoxylinovy obrazok
e Hematoxylinovy obrazok s vyrovnanim histogramu

Tieto verzie potom pouzijeme pri vytvarani pseudo-masiek.

7.3.3 Tvorba pseudo-masiek

Pre vytvaranie pseudo-masiek pouzivame sekvenciu metoéd pocitacového videnia.
Spolu pouzivame 4 rdzne sekvencie, pricom kazda je aplikovand na kazda verziu
obrazka spominani vyssie. Tymto sposobom dostaneme 24 roznych pseudo-masiek
pre jeden povodny obrazok. Tento proces vytvarania pseudo-masky prebieha na-

sledovne:

1. Obrazok je nacitany spolu s jeho anotaciami vo forme ohranicujicich ram-

cekov.

2. Nasledne sa z obrazka vyrezu jednotlivé lymfocyty podl'a ohrani¢ujucich ram-

¢ekov.

3. Ealej sa aplikuju 4 rézne sekvencie metoéd pocitacového videnia, teda z jed-
ného povodného vyrezu vzniknu 4 dalsie. Tieto sekvencie sa liSia podla

aplikovanych funkcii:
e Otsu funkcia prahovania (ang. thresholding)

e Adaptivna funkcia prahovania
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e Otsu funkcia prahovania spolu s rozmazanim obrazka
e Adaptivna funkcia prahovania spolu s rozmazanim obrézka

4. V dalsom kroku sa pouZzije morfologické otvaranie, ktoré odstrani malé ar-

tefakty ponechané po funkcii prahovania.

5. Predchadzajice kroky nam vytvorili "prototyp" pseudo-masky. V dalsom
kroku pouzijeme tento prototyp pre algoritmus znackami-riadeného waters-
hedu (ang. mark-controlled watershed) spolu s povodnou verziou obrazku.

Vysledkom je hotova pseudo-maska pre oblast jedného bukového jadra.

6. V poslednom kroku spojime vSetky pseudo-masky jednotlivych lymfocytov

a vytvorime tak velka pseudo-masku velkosti povodného obrazku.

Takto sme spolu dostali 24 réznych pseudo-masiek pre jeden obrazok. Dalsi sposob
vytvarania pseudo-masiek spoc¢ival v zlucovani tychto 24 do jednej. Tu sme pouzili

2 odligné pristupy:

1. Zoradili sme masky podla tspesnosti prislusného modelu (podla Dice koefi-
cientu), a nasledne sme spojili 100%, 75%, 50% a 25% najlepsich masiek do
jednej.

2. Nechali sme hlasovat vSetky masky pre kazdy pixel. Aby mohol byt pixel
oznaceny ako popredie (jadro lymfocytu), muselo zan hlasovat 24/24, 23 /24,
22/24 alebo 21/24 masiek.

Tymito pristupmi sme ziskali dalsich 8 sad masiek.

7.3.4 Experimenty

N&s navrhovany systém sa vyvijal s kazdym vykonanym experimentom, pretoze

kazdy experiment nadvazoval na predchadzajici. Kazdy experiment bol vykonany
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trikrat, aby sa znizilo riziko, Ze ndhodné inicializacia parametrov modelu alebo
rozdelenie trénovacich idajov na trénovaciu a valida¢nt sadu vyrazne zlepsi alebo

vyrazne zhorsi konecné vysledky.

Pri prvom experimente sme pouzili len samotny model U-Net ako model hlbokého
ucenia. Na ttto tlohu sa pouzil plne anotovany TNBC dataset. Vo vysledku tohto
experimentu moézeme vidiet, Ze trénovanie modelu len na malej datovej vzorke, hoci
plne anotovanej, je nepostacujice. Model dosiahol Dice koeficient 18,91% a IoU

10,64%.

V druhom experimente sa pouzili pseudo-masky vytvorené kombinaciou réznych
verzii obrazka a roznych technik pocitacového videnia. Pseudo-masky boli genero-
vané pre slabo anotovany stubor tidajov TIGER z poskytnutych anotécii ohrani¢u-
jucich raméekov. Tie sa potom pouzili na nasledné trénovanie modelu U-Net, ktory
bol trénovany na datasete TIGER. Na kone¢nii evaluaciu modelu sa pouzil dataset
TNBC. Model natrénovany na kazdej sade pseudo-masiek dosiahol vyrazne lepsie
vysledky oproti modelu trénovanému len na TNBC datasete. Najlepsi vysledok
dosiahol model trénovany s hemtoxylinovou pseudo-maskou s vyrovnanim histo-
gramu (ang. histogram equalization), kde sa nepouzilo rozmazanie a bola pouZzité

Otsu funkcia prahovania. Dosiahol Dice koeficient 52,57% a IoU 36,01%.

Treti experiment nadvézuje na druhy. Porovnévali sme v iom rozne stratégie zlu-
¢ovania suborov masiek. Opét sme tieto zlucované masky pouzili na trénovanie
modelu U-Net na datasete TIGER a na konecné vyhodnotenie sa pouzil dataset
TNBC. Jednoznacne lepsie vysledky dosiahol pristup zlu¢ovania masiek prostred-
nictvom hlasovania, pricom najlepsi spésob hlasovania bol ten, v ktorom za kazdy
pixel hlasovalo 23/24 masick. Takto trénovany model dosiahol Dice koeficient

53,53% a IoU 37,42%.

Vo stvrtom experimente sme vyuzili stratégiu ucenia s prenosom (ang. transfer
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learning), pri ktorej sme pouzili najlepsi model natrénovany pocas tretieho experi-
mentu a dotrénovali ho na TNBC datasete. Experimentovali sme aj so zamrazenim
enkoderu pocas dotrénovania. Model som zamrazenym enkdéderom dosiahol naj-

lepsie vysledky, Dice 57.59% a IoU 41.25%.

7.4 Zaver

Cielom tejto prace bolo vyvinut hybridny pristup, ktory by sa dokazal vyspo-
riadat s beznymi vyzvami pri automatizovanej sémantickej segmentacii lekarskych
snimok. Konkrétne, vyzvy predstavovali maly objem plne anotovanych dat a velky
objem dat, ktoré st len slabo anotované. Ulohou bolo segmentovat jadra lymfo-
cytov. Aj to bola velka vyzva, pretoze mnohé najmodernejSie prace pracuju so
slabymi anotaciami vo forme ohranic¢ujicich boxov, ale ich cielom je vykonat seg-
mentaciu jadier bez ohladu na triedu bunkovych jadier, zatial ¢o v naSej préaci
sa snazime segmentovat $pecificku triedu jadier - jadra lymfocytov. Podla nasich
najlepsich vedomosti v ¢ase pisania tejto prace nie je k dispozicii takmer Ziadna
vyskumna préaca tykajica sa presne tohto nasho $pecifického nastavenia. Na tito
tlohu sme pouzili dva verejne dostupné datasety: TIGER [15] dataset s anotaciami
ohrani¢ujucich raméekov jadier lymfocytov a dataset TNBC [78], ktory poskytoval

uplné anotacie vo forme masiek jadier lymfocytov na drovni pixelov.

Vybrali sme model hlbokého uc¢enia na zaklade najnovsich poznatkov a pouzili sme
zndme metody tradiéného pocitacového videnia, ako st Otsu a adaptivne praho-
vanie a algoritmus znackami-riadeného watershedu, na pripravu réznych stborov
pseudo-masiek z anotacii ohranic¢ujicich poli. Potom sme dalej vychadzali z mys-
lienky, ze kazda sada by mohla fungovat lepSie na roéznych obrézkoch, takze sme

vyvinuli rozne stratégie zltic¢enia pseudo-masiek.

V experimentoch sme dokazali, Ze trénovat model len na velmi malom, hoci plne
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anotovanom, datasete TNBC je nedostatocné. Ten isty model, ked bol natréno-
vany na vacSom datasete TIGER, aj ked s pseudo-maskami pouZzitymi pocas tréno-
vania, dosiahol lepSie vysledky v porovnani s modelom natrénovanym vylu¢ne na
subore udajov TNBC, a to z hladiska koeficientu Dice aj IoU. Model, ktory pouzi-
val najlepsie zlucenu pseudo-masku, sa dokazal eSte viac zlepsit v metrikidch Dice
koeficientu aj IoU. Kone¢ny model, ktory bol predtrénovany na datasete TIGER
s pseudo-maskami a potom dotrénovany na datasete TNBC, dokézal dosiahnut

najlepsie vysledky v koeficiente Dice a IoU spomedzi vSetkych modelov.

Medzi mozné budtce zlepSenia moze patrit plne automatizovany proces so samou-
¢iacou sa sluckou, kde v prvej iteracii natrénujeme model pomocou pseudo-masiek
vytvorenych prostrednictvom sekvencie tradiénych metod pocitacového videnia,
potom ho nechame predpovedat masky na tom istom stubore udajov, na ktorom
bol natrénovany, vdaka ¢omu vytvorime "druhu generdciu" pseudo-masiek. Na-
sledne by sa model natrénoval na tejto druhej generacii pseudo-masiek a cely tento

proces by sa iterativne opakoval.
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Appendix A

Plan of Work

Bachelor’s thesis evidence number: FIIT-100241-116291

A.1 Winter Semester

In Table A.1, we can see a summarized plan of work for the winter semester. During
this time, we familiarizing ourselves with the whole topic of weak segmentation and
traditional methods of computer vision. We also explored the available datasets,
and after we selected the TIGER dataset, we explored it in more depth. We were
studying the state-of-the-art work, gathering information, and running preliminary
experiments. Later, we constructed an initial concept of experiments that should
be performed. The experiments were performed more slowly than we anticipated
because of the complicated dataset features, which caused us a slight delay, but on
the other hand, we were now very confident in the dataset usage and knew better

what we should do next to be successful.
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Table A.1: Plan of Work for Winter Semester

’ Week \ Planned Work ‘

1-2 Literature review on digital pathology and TIL detection.
3-6 | Study of deep learning techniques and architectures (CNNs, U-Net,
Vision Transformers) and different pseudo-label generation techniques
(GrabCut, watershed, Otsu).

7 Familiarization with the TIGER dataset.
8-10 | Initial development of the pipeline to convert bounding box annota-
tions to pixel masks. Preparing the mid-term report.
11-13 | Preparing mid-term report, finishing analysis, summarizing progress
and findings.

A.2 Summer Semester

The Table A.2 displays the plan for the summer semester. During this time, we
had a large portion of work to do. We selected a TNBC dataset, which was fully
annotated, as another dataset to be included in this work. We had to implement
24 different strategies for pseudo-mask generation and then perform the model
training on all of them, and select the best one. We also came up with different
methods of generating pseudo-masks (fusing the original 24 pseudo-masks), mean-
ing that we had another large portion of experiments to perform. Then, a transfer
learning approach idea came for the final model, which was the most successful.
During the whole semester, we performed almost 600 trainings, and in comparison
to the winter semester, the whole work has picked up speed. As we mentioned,
we were adding more experiments as the work progressed. We were able to suc-
cessfully build the pipeline of computer vision operations that generated different
pseudo-masks, prepare the U-Net segmentation model, and were able to train it

in the Azure cloud environment.

Given the many challenges we had to overcome, like the weakly annotated TIGER

dataset, a very small TNBC dataset, inconsistencies across the datasets, and the
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challenging task of segmenting only a specific class of cell nuclei (not all cell nuclei),

we conclude that this plan was fully adhered to and completed.

Table A.2: Plan of Work for Summer Semester

’ Week \ Planned Work

1-2 Continuing with the computer vision pipeline development.

3 Testing and refining the pseudo-label generation algorithm.
4-8 | Implementing, training, and evaluation of the U-Net segmentation
model trained with various pseudo-masks. Analysis of the model using
evaluation metrics (IoU, Dice coefficient).

9 Final experiments, preparation of the final thesis outline.
10-12 | Writing and presenting the final report with results and conclusions.
13 Submission of final thesis.
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Technical Documentation

B.1 Project’s folder structure

%—— configs/

— azure_connect_example. json
— azure_job.yaml
— azure_upload_data.yaml

— model_train_base.yaml

— paths.yaml

data/
processed_tiger/
processed_tnbc/
raw_tiger/

': images/

coco_annotations_placeholder. json

1
L

_I_l_l_l_l_l“_!_l_l_l_l

raw_tnbc/

B-1
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1 ': images/
masks/

1—— example_data/

processed_tiger/

processed_tnbc/

raw_tiger/

1 ': images/
1__ tiger-coco.json

raw_tnbc/

': images/

masks/

RS o S o SN N S —

models/

src/

%- azure/

— azure_conda.yaml

— azure_train.ipynb

models/
— inference.ipynb

— model_factory.py

1
]
1__ — azure_upload_data.ipynb
1
]

— til_dataset.py
— image_preprocessor.py
— image_stats.py

— mask_generator.py

RN Y SN [ U [ | | O | U | | — |

— sample.py

— utils.py
1—— .amlignore
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— .gitignore
— main.ipynb
— main.py

— README.md

— requirements.txt

B.2 Description of folders and files

B.2.1 root directory

.amlignore Here is a list of folders and files that are ignored when a job is
submitted to the Azure ML platform. When a job is submitted, Azure takes a
snapshot of the directory it is given as the source directory. The files listed in

.amlignore will be ignored by this operation.
.gitignore Files to be ignored by the Git versioning system.

main.ipynb In this Jupyter notebook, the whole preprocessing, pseudo-mask
generating, and pseudo-mask fusing pipeline can be run. It also provides the visu-
alizations of preprocessed images and pseudo-masks. This notebook has already
been executed, so you can also see the outputs of each cell. Open the main.ipynb

to see it.

main.py This is the main training and evaluation script. It can be run both
locally and on the Azure ML platform. See Section B.4 to see both possible

options.

README.md In this file, the document with the same content as in this Chap-

ter is.
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requirements.txt Contains Python dependencies that need to be installed to

run the project.

B.2.2 config directory files

azure connect example.json Contains the information required to authen-
ticate and connect to your Azure ML Workspace. You will need to fill out this
configuration file, otherwise, the connection will not be successful. Keep the struc-

ture, just change the values to match your account.

azure job.yaml Contains all configuration values that are used to submit the
job run, which will train the model. These include the data asset information, the
environment information (environment where the job will run), the job informa-
tion (like source directory to push to Azure ML, compute target, etc.), and the

arguments to be passed to the main.py function once it is executed.

azure upload data.yaml Here is the information about the folder you want
to upload to the Azure storage, the destination folder on Azure ML, and options

to overwrite already existing files and see the progress of the whole process.

model train base.yaml Contains the hyperparameters that are used by the
model during the training and evaluation. It also contains the option to load the

pre-trained model.

paths.yaml This file contains all paths, or parts of paths, where the images are
being stored, created, modified, and updated, and from which are loaded during
the preprocessing. The whole folder structure for the preprocessing and pseudo-
mask creation is created in the ./main.ipynb notebook, where the full paths

are built. Note that by default, all file manipulations are performed under the
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/example_data directory (unless changed in this config). For the demo, we rec-
ommend keeping this configuration file as is. For the real preprocessing, we advise

changing the root_data_dir value to point to the /data directory.

B.2.3 data and example_data directories

The data directory contains four main subdirectories. Here the images and anno-
tations of the respective datasets should reside (TIGER' and TNBC? datasets).
We do not include the actual images and masks here, because of their large size,
but when running a real preprocessing, you should place them here and change the
root_data_dir value in the /configs/paths.yaml file to point to the /data di-
rectory. The /data/raw_x folders contain the raw images and annotations (bound-
ing box for TIGER - in the COCO JSON format?, PNG masks for TNBC). The
/data/preprocessed_* directories contain more subdirectories that are created

during the run of the . /main. ipynb notebook. The most important ones are:

e /data/preprocessed_*/patches/images which contains the 128 x 128 nor-

malized image patches

e /data/preprocessed_*/patches/masks which contains the 128 x 128 mask

(or pseudo-mask) patches

e /data/preprocessed_tnbc/patches/folds which contains TNBC image
and mask patches, but split into folds, where each fold directory has
/data/preprocessed_tnbc/patches/folds/fold_*/images and

/data/preprocessed_tnbc/patches/folds/fold_*/masks folder

Note that this directory is meant to be used for real preprocessing, and you need

https://tiger.grand-challenge.org/Data/
2https://zenodo.org/records/3552674
3https://roboflow.com/formats/coco-json
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to put here the correct images and annotations yourself.

The /example_data directory follows the same structure, but already contains 10
example images from the TIGER dataset in the /data/raw_tiger/images sub-
directory, the tiger-coco. json file with the TIGER bounding box annotations
in the /data/raw_tiger subdirectory, and 4 images from the TNBC dataset in
the /data/raw_tnbc/images subdirectory and their corresponding masks in the
/data/raw_tnbc/masks subdirectory. This directory is by default listed as the
root_data_dir in the /configs/path.yaml file, so in order to run the Demo you

do not need to change anything in the /configs/path.yaml file.

B.2.4 models directory

Here, the models that you wish to save and use for future fine-tuning or reference
should be placed. We do not include any pre-trained model here, since the .ckpt

files are around 300MB in size.

B.2.5 src/azure directory

azure conda.yaml Defines the dependencies that will be installed within Azure

ML environment.

azure train.ipynb From this Jupyter notebook, the training is managed. This
involves authenticating, pulling the correct data asset path, creating the environ-
ment, and submitting the job to Azure ML. Use the
/configs/azure_connect_example. json, /configs/azure_job.yaml and

/configs/model_train_base.yaml to manage the configuration of parameters.

azure_upload data.ipynb This Jupyter notebook is used to upload a locally
stored folder to the remote Azure ML data storage. Use the
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/configs/azure_upload_data.yaml to manage the configuration of parameters.

B.2.6 src/models directory

inference.ipynb In this Jupyter notebook, you run the inference of the model. A
pretrained model is required for this stage. The predictions are visualized. The in-
ference is run on the tnbc_sample_img_patch image from the /configs/paths.yaml

configuration file.
model factory.py Here we define the architecture of the model.

til dataset.py This file defines a utility class that is used to output the image
and mask pairs that are further used during the training and evaluation by the

PyTorch Dataloaders.

B.2.7 src/*.py files

image preprocessor.py Contains the ImageProcessor class that groups all

the preprocessing functionalities.

image stats.py Contains the ImageStats class that prints the statistics of the

folder that contains images, like average image height, width, area, etc.

mask generator.py Contains the MaskGenerator class that groups all the

mask-generating and mask-fusing functionalities.

sample.py Contains the Sample class that is used for visualization of the image

and its mask.
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utils.py Contains all other utility functionalities, for example, for opening and

loading . json and .yaml files.

B.3 Installation guide

B.3.1 Prerequisites
Below, we list the necessary software requirements:
e Python version 3.12+

e pip version 23.2+

Internet access to download packages

Weights and Biases account for model logging

Azure ML access (if you wish to train models there)

B.3.2 Clone the repository

Clone this repository and navigate into it:

1| git clone <repository-name>

2| cd <cloned-repository-name>

Alternatively, you can download the .zip file of this project, unpack it, and open

a terminal within it.

B.3.3 Set up the Python environment

Set up the virtual environment using pip (or create Conda environment, but we

will be using pip).
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Using MacOS:

1| python3 -m venv .venv

2| source .venv/bin/activate

or Windows (from PowerShell):

1| python -m venv .venv

2| .\.venv\Scripts\Activate.psl

B.3.4 Install dependencies

Dependencies are listed in the requirements. txt file. To install them all, use:

1| pip install -r requirements.txt

B.4 How to run the Demo

Here we present a way to run the demo version (using the demo data placed
in the /example_data folder). Be aware of the fact that since we only have 10
training images and 4 testing images in this demo, the model’s performance will
not be representative of real-world results. This is just to showcase how the project

works. Also, note that our project works with the PNG images only.

B.4.1 Preprocessing and pseudo-mask creation

1. Navigate to the ./main.ipynb Jupyter notebook. You will notice that the
notebook has already been executed (for the demonstration). Feel free to

examine it before trying to run anything.
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2. Next, make sure that you clear all outputs (to avoid any confusion) and
start running it cell after cell (or all at once). You will notice that under
the /example_data/processed_x* directories, different subdirectories will
appear. Those will be populated with different images or versions of im-
ages and masks during the preprocessing and pseudo-mask creation. During
the execution of the cells, you will also see the textual and visual output

responses.

3. After the whole notebook is executed, feel free to examine the different sub-
directories that were created - but be careful not to delete, move, or rename

any of them or their contents.

4. The data is now prepared for the training.

B.4.2 Training on Azure

Here we describe the necessary steps that are required to be able to train the model

on the Azure ML platform.

1. Ensure you have access to an Azure ML workspace and all the required in-
formation. Fill them in the /configs/azure_connect_example.json con-

figuration file.

2. Ensure that the information in the /configs/azure_upload_data.yaml con-
figuration file is correct. You will need to input the correct target_path as

this is not provided by us!

3. Then navigate into the ./src/azure/azure_upload_data.ipynb and run it
cell by cell. Be especially careful with the local and remote directory paths.

The contents of the local directory will be copied into the remote directory.

4. After the data has been uploaded, you will need to create the Azure Data
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10.

Asset. See the official Azure documentation* how to do it.

Then you will need to create an Azure compute instance. See this official

Azure documentation® for precise instructions.

Next, you will need to modify /configs/azure_job.yanl file, as we cannot

provide defaults for certain variables:

e See the dataset top-level key. You need to input the name of the Data

Asset and its version you created in Step 4.

e See the job top-level key. You need to change the job.compute to have

the name of the compute instance target you created in Step 5.

e See the jobs.args.wandb key. You will need to input your Weights and
Biases key, so the training and evaluation process can be monitored. See

the official guide® on how to get the key.

(Optional) If you wish, you can try to change the model parameters; you
can do so in the /configs/model_train_base.yaml file, but this step is

optional.

Now navigate to the ./src/azure/azure_train.ipynb and follow the in-
structions within it to submit the training and evaluation job to the Azure

ML platform.

During the training, you can see and monitor the whole process in your

Weights and Biases account.

After the training and evaluation are done, look for the outputs folder in

‘https://learn.microsoft.com/en-us/azure/machine-learning/
how-to-create-data-assets

Shttps://learn.microsoft.com/en-us/azure/machine-learning/
how-to-create-compute-instance

Shttps://docs.wandb.ai/support/find_api_key/
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the job details on the Azure ML platform. It should be in the Outputs +

logs tab, but the Azure ML platform Ul changes constantly.

11. You can download the trained model from the outputs/checkpoints/best. ckpt.

Be aware that the checkpoint file is around 300MB in size.

B.4.3 Training locally

This option presents a way to run the training and evaluation locally. Note that the
Demo will work just fine, since there is only a fraction of the size of a real dataset,
but when training with a large dataset, the time to train the model locally can be

significantly longer.
Follow these steps:

1. (Optional) If you wish, you can try to change the model parameters in the

/configs/model_train_base.yaml file, but this step is optional.

2. Run the main.py script. Be sure to input your correct Weights and Biases

key. See the official guide” on how to get the key.

python3 main.py \

[

2 --data_path './example_data' \

3 --wandb '<your-wandb-key>' \

4 --train_images_path 'processed_tiger/patches/images' \
5 --train_masks_path

— 'processed_tiger/patches/masks/fused_leave_1_out' \
6 --test_images_path 'processed_tnbc/patches/images' \

7 --test_masks_path 'processed_tnbc/patches/masks'

"https://docs.wandb.ai/support/find_api_key/
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3. During the training, you can see and monitor the whole process in your

Weights and Biases account.

4. Once the training finished, you will notice that a new /outputs directory
was created. This contains both the trained model in the
/outputs/checkpoints/best.ckpt file and the raw Weights and Biases logs
in the outputs/wandb folder. Furthermore, it contains a
outputs/test_results. json with the evaluation metrics from the evalua-

tion phase.

B.4.4 Inference

To see how the model works during inference, navigate to the

./src/models/inference.ipynb. Notice that this notebook has already been
executed as well; feel free to examine it and then clear the outputs (to avoid any
confusion). You will need to input the path to the trained model .ckpt file, as
we do not provide a trained model in the demo. Run the notebook and see the

results!
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